Skip to content

Strange Error #157

@djsaunde

Description

@djsaunde

Hello,

When I set my configuration on the SdA code to the following:

sda = SdA(
numpy_rng=numpy_rng,
n_ins=2880,
hidden_layers_sizes=[3000, 3000, 3000],
n_outs=4
)

I am getting the following error:

Traceback (most recent call last):
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/SdA.py", line 491, in
test_SdA()
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/SdA.py", line 440, in test_SdA
minibatch_avg_cost = train_fn(minibatch_index)
File "/home/dan/.local/lib/python2.7/site-packages/theano/compile/function_module.py", line 912, in call
storage_map=getattr(self.fn, 'storage_map', None))
File "/home/dan/.local/lib/python2.7/site-packages/theano/gof/link.py", line 314, in raise_with_op
reraise(exc_type, exc_value, exc_trace)
File "/home/dan/.local/lib/python2.7/site-packages/theano/compile/function_module.py", line 899, in call
self.fn() if output_subset is None else
ValueError: y_i value out of bounds
Apply node that caused the error: CrossentropySoftmaxArgmax1HotWithBias(Dot22.0, b, Elemwise{Cast{int32}}.0)
Toposort index: 26
Inputs types: [TensorType(float64, matrix), TensorType(float64, vector), TensorType(int32, vector)]
Inputs shapes: [(1, 4), (4,), (1,)]
Inputs strides: [(32, 8), (8,), (4,)]
Inputs values: [array([[ 0., 0., 0., 0.]]), array([ 0., 0., 0., 0.]), array([4], dtype=int32)]
Outputs clients: [[Sum{acc_dtype=float64}(CrossentropySoftmaxArgmax1HotWithBias.0)], [CrossentropySoftmax1HotWithBiasDx(Elemwise{Inv}[(0, 0)].0, CrossentropySoftmaxArgmax1HotWithBias.1, Elemwise{Cast{int32}}.0)], []]

Backtrace when the node is created(use Theano flag traceback.limit=N to make it longer):
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/SdA.py", line 491, in
test_SdA()
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/SdA.py", line 374, in test_SdA
n_outs=4
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/SdA.py", line 177, in init
self.finetune_cost = self.logLayer.negative_log_likelihood(self.y)
File "/home/dan/PycharmProjects/DeepLearningTutorials/code/logistic_sgd.py", line 147, in negative_log_likelihood
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])

HINT: Use the Theano flag 'exception_verbosity=high' for a debugprint and storage map footprint of this apply node.

What might be causing this? This doesn't occur when the "n_outs" variable is set to 5 or 10, or so.

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions