Skip to content

Commit b67ae6a

Browse files
committed
[mlir][vector] Missing indices on vectorization of 1-d reduction to 1-ranked memref
Vectorization of a 1-d reduction where the output variable is a 1-ranked memref can generate an invalid `vector.transfer_write` with no indices for the memref, e.g.: vector.transfer_write"(%vec, %buff) <{...}> : (vector<f32>, memref<1xf32>) -> () This patch solves the problem by providing the expected amount of indices (i.e. matching the rank of the memref).
1 parent 21aa788 commit b67ae6a

File tree

2 files changed

+47
-4
lines changed

2 files changed

+47
-4
lines changed

mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -746,12 +746,12 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
746746
auto vectorType = state.getCanonicalVecType(
747747
getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap);
748748

749+
SmallVector<Value> indices(linalgOp.getRank(outputOperand),
750+
arith::ConstantIndexOp::create(rewriter, loc, 0));
751+
749752
Operation *write;
750753
if (vectorType.getRank() > 0) {
751754
AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap));
752-
SmallVector<Value> indices(
753-
linalgOp.getRank(outputOperand),
754-
arith::ConstantIndexOp::create(rewriter, loc, 0));
755755
value = broadcastIfNeeded(rewriter, value, vectorType);
756756
assert(value.getType() == vectorType && "Incorrect type");
757757
write = vector::TransferWriteOp::create(
@@ -762,7 +762,7 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
762762
value = vector::BroadcastOp::create(rewriter, loc, vectorType, value);
763763
assert(value.getType() == vectorType && "Incorrect type");
764764
write = vector::TransferWriteOp::create(rewriter, loc, value,
765-
outputOperand->get(), ValueRange{});
765+
outputOperand->get(), indices);
766766
}
767767

768768
write = state.maskOperation(rewriter, write, linalgOp, opOperandMap);

mlir/test/Dialect/Linalg/vectorization/linalg-ops-with-patterns.mlir

Lines changed: 43 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1523,6 +1523,49 @@ module attributes {transform.with_named_sequence} {
15231523
}
15241524

15251525

1526+
// -----
1527+
1528+
// CHECK-LABEL: func @reduce_1d_memref(
1529+
// CHECK-SAME: %[[A:.*]]: memref<32xf32>
1530+
// CHECK-SAME: %[[B:.*]]: memref<1xf32>
1531+
func.func @reduce_1d_memref(%arg0: memref<32xf32>, %arg1: memref<1xf32>) {
1532+
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
1533+
1534+
// CHECK: %[[r:.*]] = vector.transfer_read %[[A]][%[[C0]]]
1535+
// CHECK-SAME: : memref<32xf32>, vector<32xf32>
1536+
// CHECK: %[[init:.*]] = vector.transfer_read %[[B]][%[[C0]]]
1537+
// CHECK-SAME: : memref<1xf32>, vector<f32>
1538+
// CHECK: %[[init_scl:.*]] = vector.extract %[[init]][]
1539+
// CHECK-SAME: : f32 from vector<f32>
1540+
// CHECK: %[[red:.*]] = vector.multi_reduction <add>, %[[r]], %[[init_scl]] [0]
1541+
// CHECK-SAME: : vector<32xf32> to f32
1542+
// CHECK: %[[red_v1:.*]] = vector.broadcast %[[red]] : f32 to vector<f32>
1543+
// CHECK: vector.transfer_write %[[red_v1]], %[[B]][%[[C0]]]
1544+
// CHECK-SAME: : vector<f32>, memref<1xf32>
1545+
linalg.generic {
1546+
indexing_maps = [affine_map<(d0) -> (d0)>,
1547+
affine_map<(d0) -> (0)>],
1548+
iterator_types = ["reduction"]}
1549+
ins(%arg0 : memref<32xf32>)
1550+
outs(%arg1 : memref<1xf32>) {
1551+
^bb0(%a: f32, %b: f32):
1552+
%0 = arith.addf %a, %b : f32
1553+
linalg.yield %0 : f32
1554+
}
1555+
1556+
return
1557+
}
1558+
1559+
module attributes {transform.with_named_sequence} {
1560+
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
1561+
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
1562+
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
1563+
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
1564+
transform.yield
1565+
}
1566+
}
1567+
1568+
15261569
// -----
15271570

15281571
// This test checks that vectorization does not occur when an input indexing map

0 commit comments

Comments
 (0)