This library contains the implementation of artificial intelligence modules of different types and classes. Besides, the project includes visualization, preprocessing utilities, and script examples that tests the functionality of the artificial intelligence components.
from nnetwork.neurons.perceptron import PerceptronGD
from visualizer import ErrorPlotter, NeuronPlotter, NeuronAnimation
from sklearn import datasets
iris = datasets.load_iris()
x = iris.data[:, :2]
y = iris.target
x, y = x[y != 2], y[y != 2]
model = PerceptronGD(lr=0.01, n_epochs=50)
history = model.fit(x, y)
ErrorPlotter().init(errors=history['errors']).show()
NeuronPlotter().init(x=x, y=y, model=model).show()
NeuronAnimation().init(x=x, y=y, model=model).show()
from nnetwork.neurons.adaline import AdalineGD
from visualizer import ErrorPlotter, NeuronPlotter, NeuronAnimation
from sklearn import datasets
import preprocessing
import numpy as np
iris = datasets.load_iris()
x, y = iris['data'], iris['target']
x = preprocessing.normalize_data(x[50:150, :2])
y = np.where(y[50:150] == 2, -1, y[50:150])
model = AdalineGD(lr=0.01, n_epochs=50)
history = model.fit(x, y)
ErrorPlotter().init(errors=history['errors']).show()
NeuronPlotter().init(x=x, y=y, model=model).show()
NeuronAnimation().init(x=x, y=y, model=model).show()
from nnetwork.growing_neural_gas.growing_neural_gas import GrowingNeuralGas
from visualizer import ErrorPlotter, GrowingNeuralGasPlotter, GrowingNeuralGasAnimation
from sklearn import datasets
import tensorflow as tf
iris = datasets.load_iris()
iris = iris.data[:, :]
data = tf.Variable(iris, dtype=tf.float32)
model = GrowingNeuralGas(a_max=4, max_number_units=100, max_clusters=4)
history = model.fit(data)
ErrorPlotter().init(errors=history['errors']).show()
GrowingNeuralGasPlotter().init(history=history).show()
GrowingNeuralGasAnimation().init(history=history).show()