This repo contains an implementation of the following AutoEncoders:
-
Vanilla AutoEncoders - AE:
The most basic autoencoder structure is one which simply maps input data-points through a bottleneck layer whose dimensionality is smaller than the input. -
Variational AutoEncoders - VAE:
The Variational Autoencoder introduces the constraint that the latent codez
is a random variable distributed according to a prior distributionp(z)
. -
Adversarially Constrained Autoencoder Interpolations - ACAI:
A critic network tries to predict the interpolation coefficient α corresponding to an interpolated datapoint. The autoencoder is trained to fool the critic into outputting α = 0.
mkvirtualenv --python=/usr/bin/python3 pytorch-AE
pip install torch torchvision
python train.py --help
-
Vanilla Autoencoder:
python train.py --model AE
-
Variational Autoencoder:
python train.py --model VAE --batch-size 512 --dataset EMNIST --seed 42 --log-interval 500 --epochs 5 --embedding-size 128
Vanilla AutoEncoders | Variational AutoEncoders | ACAI |
---|---|---|
If you have suggestions or any type of contribution idea, file an issue, make a PR and don't forget to star the repository
Feel free to check out my other repos with more work in Machine Learning: