|
| 1 | +# https://drive.google.com/open?id=0B5vxvuZBEEfTRGdXZ2NXUjNKUUk |
| 2 | + |
| 3 | +import h5py |
| 4 | +import matplotlib.gridspec as gridspec |
| 5 | +import matplotlib.widgets as mwidgets |
| 6 | +from matplotlib import path |
| 7 | +import numpy as np |
| 8 | + |
| 9 | + |
| 10 | +# uncomment this to set the backend |
| 11 | +# import matplotlib |
| 12 | +# matplotlib.use('Qt4Agg') |
| 13 | +import matplotlib.pyplot as plt |
| 14 | + |
| 15 | + |
| 16 | +class XRFInteract(object): |
| 17 | + def __init__(self, counts, positions, fig=None, pos_order=None, |
| 18 | + norm=None): |
| 19 | + |
| 20 | + if pos_order is None: |
| 21 | + pos_order = {'x': 0, |
| 22 | + 'y': 1} |
| 23 | + # extract x/y data |
| 24 | + self.x_pos = xpos = positions[pos_order['x']] |
| 25 | + self.y_pos = ypos = positions[pos_order['y']] |
| 26 | + self.points = np.transpose((xpos.ravel(), ypos.ravel())) |
| 27 | + # sort ouf the normalization |
| 28 | + if norm is None: |
| 29 | + norm = np.ones_like(self.x_pos) |
| 30 | + |
| 31 | + norm = np.atleast_3d(norm[:]) |
| 32 | + self.counts = counts[:] / norm |
| 33 | + |
| 34 | + # compute values we will use for extents below |
| 35 | + dx = np.diff(xpos.mean(axis=0)).mean() |
| 36 | + dy = np.diff(ypos.mean(axis=1)).mean() |
| 37 | + left = xpos[:, 0].mean() - dx/2 |
| 38 | + right = xpos[:, -1].mean() + dx/2 |
| 39 | + top = ypos[0].mean() - dy/2 |
| 40 | + bot = ypos[-1].mean() + dy/2 |
| 41 | + |
| 42 | + # create a figure if we must |
| 43 | + if fig is None: |
| 44 | + import matplotlib.pyplot as plt |
| 45 | + fig = plt.figure(tight_layout=True) |
| 46 | + # clear the figure |
| 47 | + fig.clf() |
| 48 | + # set the window title (look at the tool bar) |
| 49 | + fig.canvas.set_window_title('XRF map') |
| 50 | + self.fig = fig |
| 51 | + # set up the figure layout |
| 52 | + gs = gridspec.GridSpec(2, 1, height_ratios=[4, 1]) |
| 53 | + |
| 54 | + # set up the top panel (the map) |
| 55 | + self.ax_im = fig.add_subplot(gs[0, 0], gid='imgmap') |
| 56 | + self.ax_im.set_xlabel('x [?]') |
| 57 | + self.ax_im.set_ylabel('y [?]') |
| 58 | + self.ax_im.set_title( |
| 59 | + 'shift-click to select pixel, ' |
| 60 | + 'alt-drag to draw region, ' |
| 61 | + 'right-click to reset') |
| 62 | + |
| 63 | + # set up the lower axes (the average spectrum of the ROI) |
| 64 | + self.ax_spec = fig.add_subplot(gs[1, 0], gid='spectrum') |
| 65 | + self.ax_spec.set_ylabel('counts [?]') |
| 66 | + self.ax_spec.set_xlabel('bin number') |
| 67 | + self.ax_spec.set_yscale('log') |
| 68 | + self.ax_spec.set_title('click-and-drag to select energy region') |
| 69 | + self._EROI_txt = self.ax_spec.annotate('ROI: all', |
| 70 | + xy=(0, 1), |
| 71 | + xytext=(0, 5), |
| 72 | + xycoords='axes fraction', |
| 73 | + textcoords='offset points') |
| 74 | + self._pixel_txt = self.ax_spec.annotate('map average', |
| 75 | + xy=(1, 1), |
| 76 | + xytext=(0, 5), |
| 77 | + xycoords='axes fraction', |
| 78 | + textcoords='offset points', |
| 79 | + ha='right') |
| 80 | + |
| 81 | + # show the initial image |
| 82 | + self.im = self.ax_im.imshow(self.counts[:, :, :].sum(axis=2), |
| 83 | + cmap='viridis', |
| 84 | + interpolation='nearest', |
| 85 | + extent=[left, right, bot, top] |
| 86 | + ) |
| 87 | + # and colorbar |
| 88 | + self.cb = self.fig.colorbar(self.im, ax=self.ax_im) |
| 89 | + |
| 90 | + # and the ROI mask (overlay in red) |
| 91 | + self.mask = np.ones(self.x_pos.shape, dtype='bool') |
| 92 | + self.mask_im = self.ax_im.imshow(self._overlay_image, |
| 93 | + interpolation='nearest', |
| 94 | + extent=[left, right, bot, top], |
| 95 | + zorder=self.im.get_zorder()) |
| 96 | + self.mask_im.mouseover = False # do not consider for mouseover text |
| 97 | + |
| 98 | + # set up the spectrum, to start average everything |
| 99 | + self.spec, = self.ax_spec.plot( |
| 100 | + self.counts.mean(axis=(0, 1)), |
| 101 | + lw=2) |
| 102 | + |
| 103 | + # set up the selector widget for the specturm |
| 104 | + self.selector = mwidgets.SpanSelector(self.ax_spec, |
| 105 | + self._on_span, |
| 106 | + 'horizontal', |
| 107 | + useblit=True, minspan=2, |
| 108 | + span_stays=True) |
| 109 | + # placeholder for the lasso selector |
| 110 | + self.lasso = None |
| 111 | + # hook up the mouse events for the XRF map |
| 112 | + self.cid = self.fig.canvas.mpl_connect('button_press_event', |
| 113 | + self._on_click) |
| 114 | + |
| 115 | + @property |
| 116 | + def _overlay_image(self): |
| 117 | + ret = np.zeros(self.mask.shape + (4,), dtype='uint8') |
| 118 | + if np.all(self.mask): |
| 119 | + return ret |
| 120 | + ret[:, :, 0] = 255 |
| 121 | + ret[:, :, 3] = 100 * self.mask.astype('uint8') |
| 122 | + return ret |
| 123 | + |
| 124 | + def _on_click(self, event): |
| 125 | + # not in the right axes, bail |
| 126 | + ax = event.inaxes |
| 127 | + if ax is None or ax.get_gid() != 'imgmap': |
| 128 | + return |
| 129 | + # if right click, clear ROI |
| 130 | + if event.button == 3: |
| 131 | + return self._reset_spectrum() |
| 132 | + |
| 133 | + # if alt, start lasso |
| 134 | + if event.key == 'alt': |
| 135 | + return self._lasso_on_press(event) |
| 136 | + # if shift, select a pixel |
| 137 | + if event.key == 'shift': |
| 138 | + return self._pixel_select(event) |
| 139 | + |
| 140 | + def _reset_spectrum(self): |
| 141 | + self.mask = np.ones(self.x_pos.shape, dtype='bool') |
| 142 | + self.mask_im.set_data(self._overlay_image) |
| 143 | + new_y_data = self.counts.mean(axis=(0, 1)) |
| 144 | + self.spec.set_ydata(new_y_data) |
| 145 | + self._pixel_txt.set_text('map average') |
| 146 | + self.ax_spec.relim() |
| 147 | + self.ax_spec.autoscale(True, axis='y') |
| 148 | + self.fig.canvas.draw_idle() |
| 149 | + |
| 150 | + def _pixel_select(self, event): |
| 151 | + |
| 152 | + x, y = event.xdata, event.ydata |
| 153 | + # get index by assuming even spacing |
| 154 | + # TODO use kdtree? |
| 155 | + diff = np.hypot((self.x_pos - x), (self.y_pos - y)) |
| 156 | + y_ind, x_ind = np.unravel_index(np.argmin(diff), diff.shape) |
| 157 | + |
| 158 | + # get the spectrum for this point |
| 159 | + new_y_data = self.counts[y_ind, x_ind, :] |
| 160 | + self.mask = np.zeros(self.x_pos.shape, dtype='bool') |
| 161 | + self.mask[y_ind, x_ind] = True |
| 162 | + self.mask_im.set_data(self._overlay_image) |
| 163 | + self._pixel_txt.set_text( |
| 164 | + 'pixel: [{:d}, {:d}] ({:.3g}, {:.3g})'.format( |
| 165 | + y_ind, x_ind, |
| 166 | + self.x_pos[y_ind, x_ind], |
| 167 | + self.y_pos[y_ind, x_ind])) |
| 168 | + |
| 169 | + self.spec.set_ydata(new_y_data) |
| 170 | + self.ax_spec.relim() |
| 171 | + self.ax_spec.autoscale(True, axis='y') |
| 172 | + self.fig.canvas.draw_idle() |
| 173 | + |
| 174 | + def _on_span(self, vmin, vmax): |
| 175 | + vmin, vmax = map(int, (vmin, vmax)) |
| 176 | + new_image = self.counts[:, :, vmin:vmax].sum(axis=2) |
| 177 | + new_max = new_image.max() |
| 178 | + self._EROI_txt.set_text('ROI: {}:{}'.format(vmin, vmax)) |
| 179 | + self.im.set_data(new_image) |
| 180 | + self.im.set_clim(0, new_max) |
| 181 | + self.fig.canvas.draw_idle() |
| 182 | + |
| 183 | + def _lasso_on_press(self, event): |
| 184 | + self.lasso = mwidgets.Lasso(event.inaxes, (event.xdata, event.ydata), |
| 185 | + self._lasso_call_back) |
| 186 | + |
| 187 | + def _lasso_call_back(self, verts): |
| 188 | + p = path.Path(verts) |
| 189 | + |
| 190 | + new_mask = p.contains_points(self.points).reshape(*self.x_pos.shape) |
| 191 | + self.mask = new_mask |
| 192 | + self.mask_im.set_data(self._overlay_image) |
| 193 | + new_y_data = self.counts[new_mask].mean(axis=0) |
| 194 | + self._pixel_txt.set_text('lasso mask') |
| 195 | + self.spec.set_ydata(new_y_data) |
| 196 | + self.ax_spec.relim() |
| 197 | + self.ax_spec.autoscale(True, axis='y') |
| 198 | + self.fig.canvas.draw_idle() |
| 199 | + |
| 200 | + |
| 201 | +# def make_text_demo(inp='BNL', n_chan=1000): |
| 202 | +# '''Make some synthetic data |
| 203 | +# ''' |
| 204 | +# from matplotlib.figure import Figure |
| 205 | +# from matplotlib.backends.backend_agg import FigureCanvas |
| 206 | +# fig = Figure() |
| 207 | +# canvas = FigureCanvas(fig) |
| 208 | +# canvas.draw() |
| 209 | +# im_shape = fig.canvas.get_width_height()[::-1] + (3,) |
| 210 | +# t = fig.text(.5, .5, '', fontsize=350, ha='center', va='center') |
| 211 | +# counts = np.random.rand(*(im_shape[:2] + (n_chan,))) |
| 212 | +# x = np.linspace(0, 1, n_chan) |
| 213 | +# for j, l in enumerate(inp): |
| 214 | +# t.set_text(l) |
| 215 | +# fig.canvas.draw() |
| 216 | +# im = np.fromstring(fig.canvas.tostring_rgb(), |
| 217 | +# dtype=np.uint8).reshape(im_shape) |
| 218 | +# im = 255 - np.mean(im, axis=2, keepdims=True) |
| 219 | +# counts += (150 * im * np.exp(-500 * ((1+j)/(len(inp) + 1) - x)**2) |
| 220 | +# .reshape(1, 1, -1)) |
| 221 | +# del im |
| 222 | +# |
| 223 | +# return counts |
| 224 | +# |
| 225 | +# |
| 226 | +# counts = make_text_demo() |
| 227 | +# N, M = counts.shape[:2] |
| 228 | +# X, Y = np.meshgrid(range(M), range(N)) |
| 229 | +# pos = np.stack([.01*X + 100, .01*Y + 50]) |
| 230 | +# |
| 231 | +# xrf = XRFInteract(counts, pos) |
| 232 | + |
| 233 | +# to look at a data file |
| 234 | +fn = 'scan_3624.h5' |
| 235 | +F = h5py.File(fn, 'r') |
| 236 | +g = F['xrfmap'] |
| 237 | + |
| 238 | +xrf = XRFInteract(g['detsum']['counts'][:], g['positions']['pos'][:], |
| 239 | + norm=g['scalers']['val'][:, :, 0]) |
| 240 | + |
| 241 | +# un comment out this line to use 'interacitve' mode |
| 242 | +# plt.ion() |
| 243 | +plt.show() |
0 commit comments