Skip to content

Commit 4b51cd5

Browse files
v1.13: AI-powered search breaking changes (#3137)
1 parent 89f1502 commit 4b51cd5

21 files changed

+98
-180
lines changed

.code-samples.meilisearch.yaml

Lines changed: 20 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -1327,18 +1327,6 @@ distinct_attribute_guide_distinct_parameter_1: |-
13271327
"q": "white shirt",
13281328
"distinct": "sku"
13291329
}'
1330-
get_similar_post_1: |-
1331-
curl \
1332-
-X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/similar' \
1333-
-H 'Content-Type: application/json' \
1334-
-H 'Authorization: Bearer DEFAULT_SEARCH_API_KEY' \
1335-
--data-binary '{
1336-
"id": TARGET_DOCUMENT_ID,
1337-
"embedder": "EMBEDDER_NAME"
1338-
}'
1339-
get_similar_get_1: |-
1340-
curl \
1341-
-X GET 'MEILISEARCH_URL/indexes/INDEX_NAME/similar?id=TARGET_DOCUMENT_ID&embedder=EMBEDDER_NAME'
13421330
search_parameter_reference_ranking_score_threshold_1: |-
13431331
curl \
13441332
-X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/search' \
@@ -1372,12 +1360,22 @@ reset_localized_attribute_settings_1: |-
13721360
-X DELETE 'MEILISEARCH_URL/indexes/INDEX_NAME/settings/localized-attributes'
13731361
get_all_batches_1: |-
13741362
curl \
1375-
-X GET 'http://localhost:7700/batches'
1363+
-X GET 'http://MEILISEARCH_URL/batches'
13761364
get_batch_1: |-
13771365
curl \
1378-
-X GET 'http://localhost:7700/batches/BATCH_UID'
1379-
1380-
### Code samples for experimental features
1366+
-X GET 'http://MEILISEARCH_URL/batches/BATCH_UID'
1367+
get_similar_post_1: |-
1368+
curl \
1369+
-X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/similar' \
1370+
-H 'Content-Type: application/json' \
1371+
-H 'Authorization: Bearer DEFAULT_SEARCH_API_KEY' \
1372+
--data-binary '{
1373+
"id": TARGET_DOCUMENT_ID,
1374+
"embedder": "EMBEDDER_NAME"
1375+
}'
1376+
get_similar_get_1: |-
1377+
curl \
1378+
-X GET 'MEILISEARCH_URL/indexes/INDEX_NAME/similar?id=TARGET_DOCUMENT_ID&embedder=EMBEDDER_NAME'
13811379
get_embedders_1: |-
13821380
curl \
13831381
-X GET 'MEILISEARCH_URL/indexes/INDEX_NAME/settings/embedders'
@@ -1388,7 +1386,7 @@ update_embedders_1: |-
13881386
--data-binary '{
13891387
"default": {
13901388
"source": "openAi",
1391-
"apiKey": "anOpenAiApiKey",
1389+
"apiKey": "OPEN_AI_API_KEY",
13921390
"model": "text-embedding-3-small",
13931391
"documentTemplate": "A document titled '{{doc.title}}' whose description starts with {{doc.overview|truncatewords: 20}}"
13941392
}
@@ -1397,7 +1395,7 @@ reset_embedders_1: |-
13971395
curl \
13981396
-X DELETE 'MEILISEARCH_URL/indexes/INDEX_NAME/settings/embedders'
13991397
search_parameter_guide_hybrid_1: |-
1400-
curl -X POST 'localhost:7700/indexes/INDEX_NAME/search' \
1398+
curl -X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/search' \
14011399
-H 'content-type: application/json' \
14021400
--data-binary '{
14031401
"q": "kitchen utensils",
@@ -1407,14 +1405,14 @@ search_parameter_guide_hybrid_1: |-
14071405
}
14081406
}'
14091407
search_parameter_guide_vector_1: |-
1410-
curl -X POST 'localhost:7700/indexes/INDEX_NAME/search' \
1408+
curl -X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/search' \
14111409
-H 'content-type: application/json' \
14121410
--data-binary '{
14131411
"vector": [0, 1, 2],
14141412
"embedder": "EMBEDDER_NAME"
14151413
}'
14161414
search_parameter_reference_retrieve_vectors_1: |-
1417-
curl -X POST 'localhost:7700/indexes/INDEX_NAME/search' \
1415+
curl -X POST 'MEILISEARCH_URL/indexes/INDEX_NAME/search' \
14181416
-H 'content-type: application/json' \
14191417
--data-binary '{
14201418
"q": "kitchen utensils",
@@ -1423,6 +1421,8 @@ search_parameter_reference_retrieve_vectors_1: |-
14231421
"embedder": "EMBEDDER_NAME"
14241422
}
14251423
}'
1424+
1425+
### Code samples for experimental features
14261426
experimental_get_metrics_1: |-
14271427
curl \
14281428
-X GET 'MEILISEARCH_URL/metrics'

config/redirects.json

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -633,5 +633,10 @@
633633
"source": "/docs/guides/deployment/gcp",
634634
"destination": "/guides/deployment/running_production",
635635
"permanent": true
636+
},
637+
{
638+
"source": "/docs/learn/ai_powered_search/deactivate_ai_powered_search",
639+
"destination": "/docs/learn/ai_powered_search/getting_started_with_ai_search",
640+
"permanent": true
636641
}
637642
]

config/sidebar-learn.json

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -49,11 +49,6 @@
4949
"label": "Use AI-powered search with user-provided embeddings",
5050
"slug": "search_with_user_provided_embeddings"
5151
},
52-
{
53-
"source": "learn/ai_powered_search/deactivate_ai_powered_search.mdx",
54-
"label": "Deactivate AI-powered search",
55-
"slug": "deactivate_ai_powered_search"
56-
},
5752
{
5853
"source": "learn/ai_powered_search/difference_full_text_ai_search.mdx",
5954
"label": "Differences between full-text and AI-powered search",

guides/computing_hugging_face_embeddings_gpu.mdx

Lines changed: 1 addition & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -47,23 +47,14 @@ cargo build --release --features cuda
4747

4848
This might take a few moments. Once the compiler is done, you should have a CUDA-compatible Meilisearch binary.
4949

50-
## Enable vector search
50+
## Configure the Hugging Face embedder
5151

5252
Run your freshly compiled binary:
5353

5454
```sh
5555
./meilisearch
5656
```
5757

58-
Next, enable the vector store experimental feature:
59-
60-
```sh
61-
curl \
62-
-X PATCH 'MEILISEARCH_URL/experimental-features/' \
63-
-H 'Content-Type: application/json' \
64-
--data-binary '{ "vectorStore": true }'
65-
```
66-
6758
Then add the Hugging Face embedder to your index settings:
6859

6960
```sh

guides/embedders/cloudflare.mdx

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -13,14 +13,13 @@ This guide will walk you through the process of setting up Meilisearch with Clou
1313

1414
To follow this guide, you'll need:
1515

16-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=vector-search&utm_source=docs&utm_medium=cloudflare-embeddings-guide) project running version 1.10 or above with the Vector store activated.
17-
- A Cloudflare account with access to Worker AI and an API key. You can sign up for a Cloudflare account at [Cloudflare](https://www.cloudflare.com/).
18-
- Your Cloudflare account ID.
19-
- No backend required.
16+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
17+
- A Cloudflare account with access to Worker AI and an API key. You can sign up for a Cloudflare account at [Cloudflare](https://www.cloudflare.com/)
18+
- Your Cloudflare account ID
2019

2120
## Setting up Meilisearch
2221

23-
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=cloudflare-embeddings-guide#update-embedder-settings) for more details on updating the embedder settings.
22+
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings) for more details on updating the embedder settings.
2423

2524
Cloudflare Worker AI offers the following embedding models:
2625

@@ -66,7 +65,7 @@ Once you've configured the embedder settings, Meilisearch will automatically gen
6665

6766
Please note that Cloudflare may have rate limiting, which is managed by Meilisearch. If you have a free account, the indexation process may take some time, but Meilisearch will handle it with a retry strategy.
6867

69-
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks?utm_campaign=vector-search&utm_source=docs&utm_medium=cloudflare-embeddings-guide#get-tasks).
68+
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks).
7069

7170
## Testing semantic search
7271

@@ -96,4 +95,4 @@ You can use the Meilisearch API or client libraries to perform searches and retr
9695

9796
By following this guide, you should now have Meilisearch set up with Cloudflare Worker AI embedding, enabling you to leverage semantic search capabilities in your application. Meilisearch's auto-batching and efficient handling of embeddings make it a powerful choice for integrating semantic search into your project.
9897

99-
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=cloudflare-embeddings-guide#embedders-experimental).
98+
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings).

guides/embedders/cohere.mdx

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,13 +13,13 @@ This guide will walk you through the process of setting up Meilisearch with Cohe
1313

1414
To follow this guide, you'll need:
1515

16-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=vector-search&utm_source=docs&utm_medium=cohere-embeddings-guide) project running version 1.10 or above with the Vector store activated.
16+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
1717
- A Cohere account with an API key for embedding generation. You can sign up for a Cohere account at [Cohere](https://cohere.com/).
1818
- No backend required.
1919

2020
## Setting up Meilisearch
2121

22-
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=cohere-embeddings-guide#update-embedder-settings) for more details on updating the embedder settings.
22+
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings) for more details on updating the embedder settings.
2323

2424
Cohere offers multiple embedding models:
2525
- `embed-english-v3.0` and `embed-multilingual-v3.0`: 1024 dimensions
@@ -67,7 +67,7 @@ Once you've configured the embedder settings, Meilisearch will automatically gen
6767

6868
Please note that most third-party tools have rate limiting, which is managed by Meilisearch. If you have a free account, the indexation process may take some time, but Meilisearch will handle it with a retry strategy.
6969

70-
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](https://www.meilisearch.com/docs/reference/api/tasks?utm_campaign=vector-search&utm_source=docs&utm_medium=cohere-embeddings-guide#get-tasks).
70+
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](https://www.meilisearch.com/docs/reference/api/tasks).
7171

7272
## Testing semantic search
7373

@@ -97,5 +97,4 @@ You can use the Meilisearch API or client libraries to perform searches and retr
9797

9898
By following this guide, you should now have Meilisearch set up with Cohere embedding, enabling you to leverage semantic search capabilities in your application. Meilisearch's auto-batching and efficient handling of embeddings make it a powerful choice for integrating semantic search into your project.
9999

100-
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=cohere-embeddings-guide#embedders-experimental).
101-
100+
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings).

guides/embedders/huggingface.mdx

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,7 @@ You can use Hugging Face and Meilisearch in two ways: running the model locally
1717

1818
To follow this guide, you'll need:
1919

20-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version 1.10 or above with the Vector store activated
20+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
2121
- A [Hugging Face account](https://huggingface.co/) with a deployed inference endpoint
2222
- The endpoint URL and API key of the deployed model on your Hugging Face account
2323

@@ -83,4 +83,4 @@ In this request:
8383

8484
You have set up with an embedder using Hugging Face Inference Endpoints. This allows you to use pure semantic search capabilities in your application.
8585

86-
Consult the [embedder setting documentation](/reference/api/settings#embedders-experimental) for more information on other embedder configuration options.
86+
Consult the [embedder setting documentation](/reference/api/settings) for more information on other embedder configuration options.

guides/embedders/mistral.mdx

Lines changed: 4 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -13,13 +13,13 @@ This guide will walk you through the process of setting up Meilisearch with Mist
1313

1414
To follow this guide, you'll need:
1515

16-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=vector-search&utm_source=docs&utm_medium=mistral-embeddings-guide) project running version 1.10 or above with the Vector store activated.
16+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
1717
- A Mistral account with an API key for embedding generation. You can sign up for a Mistral account at [Mistral](https://mistral.ai/).
1818
- No backend required.
1919

2020
## Setting up Meilisearch
2121

22-
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=mistral-embeddings-guide#update-embedder-settings) for more details on updating the embedder settings.
22+
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings) for more details on updating the embedder settings.
2323

2424
While using Mistral to generate embeddings, you'll need to use the model `mistral-embed`. Unlike some other services, Mistral currently offers only one embedding model.
2525

@@ -63,7 +63,7 @@ Once you've configured the embedder settings, Meilisearch will automatically gen
6363

6464
Please note that most third-party tools have rate limiting, which is managed by Meilisearch. If you have a free account, the indexation process may take some time, but Meilisearch will handle it with a retry strategy.
6565

66-
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks?utm_campaign=vector-search&utm_source=docs&utm_medium=mistral-embeddings-guide#get-tasks)
66+
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks)
6767

6868
## Testing semantic search
6969

@@ -93,5 +93,4 @@ You can use the Meilisearch API or client libraries to perform searches and retr
9393

9494
By following this guide, you should now have Meilisearch set up with Mistral embedding, enabling you to leverage semantic search capabilities in your application. Meilisearch's auto-batching and efficient handling of embeddings make it a powerful choice for integrating semantic search into your project.
9595

96-
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=mistral-embeddings-guide#embedders-experimental).
97-
96+
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings).

guides/embedders/openai.mdx

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -13,13 +13,13 @@ This guide will walk you through the process of setting up Meilisearch with Open
1313

1414
To follow this guide, you'll need:
1515

16-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=vector-search&utm_source=docs&utm_medium=openai-embeddings-guide) project running version 1.10 or above with the Vector store activated.
16+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
1717
- An OpenAI account with an API key for embedding generation. You can sign up for an OpenAI account at [OpenAI](https://openai.com/).
1818
- No backend required.
1919

2020
## Setting up Meilisearch
2121

22-
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=openai-embeddings-guide#update-embedder-settings) for more details on updating the embedder settings.
22+
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings) for more details on updating the embedder settings.
2323

2424
OpenAI offers three main embedding models:
2525

@@ -53,7 +53,7 @@ Once you've configured the embedder settings, Meilisearch will automatically gen
5353

5454
Please note that OpenAI has rate limiting, which is managed by Meilisearch. If you have a free account, the indexation process may take some time, but Meilisearch will handle it with a retry strategy.
5555

56-
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks?utm_campaign=vector-search&utm_source=docs&utm_medium=openai-embeddings-guide#get-tasks)
56+
It's recommended to monitor the tasks queue to ensure everything is running smoothly. You can access the tasks queue using the Cloud UI or the [Meilisearch API](/reference/api/tasks)
5757

5858
## Testing semantic search
5959

@@ -83,4 +83,4 @@ You can use the Meilisearch API or client libraries to perform searches and retr
8383

8484
By following this guide, you should now have Meilisearch set up with OpenAI embedding, enabling you to leverage semantic search capabilities in your application. Meilisearch's auto-batching and efficient handling of embeddings make it a powerful choice for integrating semantic search into your project.
8585

86-
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=openai-embeddings-guide#embedders-experimental).
86+
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings).

guides/embedders/voyage.mdx

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -13,13 +13,13 @@ This guide will walk you through the process of setting up Meilisearch with Voya
1313

1414
To follow this guide, you'll need:
1515

16-
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud?utm_campaign=vector-search&utm_source=docs&utm_medium=voyage-embeddings-guide) project running version 1.10 or above with the Vector store activated.
16+
- A [Meilisearch Cloud](https://www.meilisearch.com/cloud) project running version >=1.13
1717
- A Voyage AI account with an API key for embedding generation. You can sign up for a Voyage AI account at [Voyage AI](https://www.voyageai.com/).
1818
- No backend required.
1919

2020
## Setting up Meilisearch
2121

22-
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=voyage-embeddings-guide#update-embedder-settings) for more details on updating the embedder settings.
22+
To set up an embedder in Meilisearch, you need to configure it to your settings. You can refer to the [Meilisearch documentation](/reference/api/settings) for more details on updating the embedder settings.
2323

2424
Voyage AI offers the following embedding models:
2525

@@ -98,4 +98,4 @@ You can use the Meilisearch API or client libraries to perform searches and retr
9898

9999
By following this guide, you should now have Meilisearch set up with Voyage AI embedding, enabling you to leverage semantic search capabilities in your application. Meilisearch's auto-batching and efficient handling of embeddings make it a powerful choice for integrating semantic search into your project.
100100

101-
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings?utm_campaign=vector-search&utm_source=docs&utm_medium=voyage-embeddings-guide#embedders-experimental).
101+
To explore further configuration options for embedders, consult the [detailed documentation about the embedder setting possibilities](/reference/api/settings).

0 commit comments

Comments
 (0)