- Miriam Andrés: @miriandres
- Jesica Míguez: @jemrosas
- Sandra Orengo: @sof1508
Happy2Help is a conversational interface with automated text interactions that recognizes behavioral patterns and gives advice for those who are struggling. Built as a natural language understanding app in Flask API, using a jinja2 template and JavaScript.
Tweets related to depression issues categorized from a labeled dataset gathered from Twitter API’s service using. TF-IDF weighting to classify their polarity.
- app.py Graphical user interface
- chat.py Building a chatbot framework
- intents.json Contains every reply under each intent in JSON format
- model.py Deep learning components for chat interaction
- model_sentiments.h5 Deep learning model for sentiments
- nltk_utils.py Natural language processing with nltk
- diccionario.json Contains the dictionary of words
- train.py Training
Clone repo and create a virtual environment
$ git clone https://github.com/miriandres/Happy2Help-chatbot.git
$ cd HAPPY2HELP-CHATBOT
$ python3 -m venv venv
$ . venv/bin/activate
Install dependencies
$ (venv) pip install Flask torch torchvision tensorflow
$ (venv) pip install numpy nltk
Install nltk packages
$ (venv) python
>>> import nltk
>>> nltk.download('punkt')
>>> nltk.download('wordnet')
Run
$ (venv) python train.py
This will dump data.pth file. And then run the following command to test it in the console.
$ (venv) python app.py
$ git clone https://github.com/miriandres/Happy2Help-chatbot.git
$ cd HAPPY2HELP-CHATBOT
$ conda env create -f environment.yml