Skip to content

Serverless Apache Spark On AWS Fargate

License

Apache-2.0, Apache-2.0 licenses found

Licenses found

Apache-2.0
LICENSE
Apache-2.0
LICENSE-binary
Notifications You must be signed in to change notification settings

mu5358271/spark-on-fargate

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Serverless Spark on Fargate

AWS Fargate is a compute engine for Amazon ECS that allows you to run containers without having to manage servers or clusters

This fork implements a cluster manager using AWS Fargate as the scheduler backend, and allows you to spin up a Spark cluster and run Spark applications in real time without the need to manage servers.

Building Spark

Building the distribution

./dev/make-distribution.sh -Phadoop-3.2 -Pfargate && cd dist

Building the Docker images

From the top level directory of the Spark distribution

docker build -t bastion -f fargate/dockerfiles/spark/bindings/bastion/Dockerfile .
docker build -t spark-fargate -f fargate/dockerfiles/spark/bindings/fargate/Dockerfile .
docker build -t spark-fargate-shell -f fargate/dockerfiles/spark/bindings/fargate-shell/Dockerfile .

To use these images, push the images to a registry accessible by Fargate containers, e.g. AWS ECR

Running Spark on Fargate

AWS Infrastructure Setup

You would need to have the VPCs, Subnets, Security Groups, and IAM Roles (more specifically ECS Task Roles and Execution Roles) ready before proceeding to the next sections. Please consult AWS documentation on how to set these up.

The First Run Guide gives a taste on running a container based service on AWS Fargate, and would be a good place to start.

Here are a list of things you need

# bastion security groups allowing the bastion to communicate with the client machine and driver
bastion_sgs=
# driver security groups allowing the driver to communicate with the bastion and executors
driver_sgs=
# executor security groups allowing the executors to communicate with the driver and other executors
executor_sgs=

# should be in the public subnet
bastion_subnets=
# should be in the private subnet
driver_subnets=
# should be in the private subnet
executor_subnets=

# the role with permission to access container images, create and drive logs
execution_role=
# the role with no permission
bastion_task_role=
# the role with permission to call ecs services and perform other driver tasks
driver_task_role=
# the role with permission to perform executor tasks
executor_task_role=

# the bastion container image uri. this should be where the bastion image is pushed to
bastion_image=
# the driver container image uri. this should be where the spark-fargate-shell image is pushed to
driver_image=
# the executor container image uri. this should be where the spark-fargate image is pushed to
executor_image=

Optionally, you may specify a KMS key for authentication secret sharing and enable network and io encryption

# KMS key used to generate and encrypt authentication secret on the driver, and decrypt it on the executors 
kms_key_id=

--conf spark.authenticate=true \
--conf spark.authenticate.kms.key=${kms_key_id} \
--conf spark.network.crypto.enabled=true \
--conf spark.io.encryption.enabled=true \

You can also try out the s3 backed shuffle client and dynamic allocation. WARNING: s3 backed shuffle is not optimized, fault tolerant or speculation safe. You are strong discouraged from depending on it.

# The bucket to put shuffle files
shuffle_s3_bucket=
# The prefix to use for shuffle files, defaults to '.sparkStaging'. The shuffle files are stored under ${shuffle_s3_bucket}/${shuffle_s3_prefix}/${spark.app.id}/shuffle/
shuffle_s3_prefix=

--conf spark.shuffle.s3.bucket=${shuffle_s3_bucket} \
--conf spark.shuffle.s3.enabled=true \
--conf spark.shuffle.s3.prefix=${shuffle_s3_prefix} \
--conf spark.dynamicAllocation.enabled=true \
--conf spark.dynamicAllocation.initialExecutors=0 \
--conf spark.dynamicAllocation.maxExecutors=8 \
--conf spark.dynamicAllocation.minExecutors=0 \

Cluster Mode

You should be able to specify jar dependencies in any HDFS compatible file system that is accessible within the VPC. e.g. s3a://my-bucket/my-jar.jar

bin/spark-submit \
--master fargate \
--deploy-mode cluster \
--conf spark.fargate.container.image=${executor_image} \
--conf spark.fargate.driver.securityGroups=${driver_sgs} \
--conf spark.fargate.executor.securityGroups=${executor_sgs} \
--conf spark.fargate.driver.subnets=${driver_subnets} \
--conf spark.fargate.executor.subnets=${executor_subnets} \
--conf spark.driver.memory=8g \
--conf spark.driver.cores=4 \
--conf spark.executor.instances=2 \
--conf spark.executor.memory=8g \
--conf spark.executor.cores=4 \
--conf spark.fargate.report.interval=5s \
--conf spark.fargate.executionRole=${execution_role} \
--conf spark.fargate.driver.taskRole=${driver_task_role} \
--conf spark.fargate.executor.taskRole=${execution_role} \
--conf spark.hadoop.fs.s3a.aws.credentials.provider=com.amazonaws.auth.DefaultAWSCredentialsProviderChain \
--class org.apache.spark.examples.SparkPi \
local:///opt/spark/examples/jars/spark-examples_2.12-3.0.0-SNAPSHOT.jar 20

Client Mode/Interactive Scala Shell

If you encounter issues with SSH, you might need to add the necessary identities to you SSH agent

ssh-add ~/.ssh/id_rsa

Fill in the security groups, subnets, and roles and enjoy your serverless spark shell

timestamp=$(date +%s000)

bastion_task_definition=$(aws ecs register-task-definition \
--family bastion-${timestamp} \
--network-mode awsvpc \
--execution-role-arn ${execution_role} \
--task-role-arn ${bastion_task_role} \
--requires-compatibilities FARGATE \
--cpu 1024 \
--memory 2048 \
--container-definitions "$(cat << EOF
[
  {
    "name": "bastion",
    "image": "${bastion_image}",
    "command": [
      "$(cat ~/.ssh/id_rsa.pub | awk '{print $1" "$2" (redacted)"}')"
    ]
  }
]
EOF
)" \
--output text \
--query 'taskDefinition.taskDefinitionArn'
)

driver_task_definition=$(aws ecs register-task-definition \
--family spark-fargate-shell-${timestamp} \
--network-mode awsvpc \
--execution-role-arn ${execution_role} \
--task-role-arn ${driver_task_role} \
--requires-compatibilities FARGATE \
--cpu 4096 \
--memory 9216 \
--container-definitions "$(cat << EOF
[
  {
    "name": "spark-fargate-shell",
    "image": "${driver_image}",
    "command": [
      "$(cat ~/.ssh/id_rsa.pub | awk '{print $1" "$2" (redacted)"}')"
    ]
  }
]
EOF
)" \
--output text \
--query 'taskDefinition.taskDefinitionArn'
)

bastion_task=$(aws ecs run-task \
--task-definition bastion-${timestamp} \
--count 1 \
--launch-type FARGATE \
--network-configuration "awsvpcConfiguration={subnets=[${bastion_subnets}],securityGroups=[${bastion_sgs}],assignPublicIp=ENABLED}" \
--output text \
--query 'tasks | [0].taskArn')

driver_task=$(aws ecs run-task \
--task-definition spark-fargate-shell-${timestamp} \
--count 1 \
--launch-type FARGATE \
--network-configuration "awsvpcConfiguration={subnets=[${driver_subnets}],securityGroups=[${driver_sgs}],assignPublicIp=DISABLED}" \
--output text \
--query 'tasks | [0].taskArn')

aws ecs wait tasks-running --tasks ${bastion_task},${driver_task}

bastion_eni=$(aws ecs describe-tasks \
--tasks ${bastion_task} \
--output text \
--query 'tasks | [0].attachments | [0].details[?name==`networkInterfaceId`] | [0].value'
)

bastion_ip=$(aws ec2 describe-network-interfaces \
--network-interface-ids ${bastion_eni} \
--output text \
--query 'NetworkInterfaces | [0].Association.PublicIp'
)

driver_ip=$(aws ecs describe-tasks \
--tasks ${driver_task} \
--output text \
--query 'tasks | [0].containers[?taskArn==`'${driver_task}'`] | [0].networkInterfaces | [0].privateIpv4Address')

ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no \
-o ProxyCommand="ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -W %h:%p fargate@${bastion_ip}" \
fargate@${driver_ip} -t spark-shell --master fargate \
 --conf spark.fargate.container.image=${executor_image} \
 --conf spark.fargate.executor.securityGroups=${executor_sgs} \
 --conf spark.fargate.executor.subnets=${executor_subnets} \
 --conf spark.driver.memory=8g \
 --conf spark.driver.cores=4 \
 --conf spark.executor.instances=2 \
 --conf spark.executor.memory=8g \
 --conf spark.executor.cores=4 \
 --conf spark.fargate.executionRole=${execution_role} \
 --conf spark.fargate.executor.taskRole=${executor_task_role} \
 --conf spark.hadoop.fs.s3a.aws.credentials.provider=com.amazonaws.auth.DefaultAWSCredentialsProviderChain

Cleaning Up

aws ecs stop-task --task ${driver_task} > /dev/null
aws ecs stop-task --task ${bastion_task} > /dev/null
aws ecs deregister-task-definition --task-definition ${driver_task_definition} > /dev/null
aws ecs deregister-task-definition --task-definition ${bastion_task_definition} > /dev/null

Apache Spark

Jenkins Build AppVeyor Build PySpark Coverage

Spark is a fast and general cluster computing system for Big Data. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. It also supports a rich set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for stream processing.

http://spark.apache.org/

Online Documentation

You can find the latest Spark documentation, including a programming guide, on the project web page. This README file only contains basic setup instructions.

Building Spark

Spark is built using Apache Maven. To build Spark and its example programs, run:

build/mvn -DskipTests clean package

(You do not need to do this if you downloaded a pre-built package.)

You can build Spark using more than one thread by using the -T option with Maven, see "Parallel builds in Maven 3". More detailed documentation is available from the project site, at "Building Spark".

For general development tips, including info on developing Spark using an IDE, see "Useful Developer Tools".

Interactive Scala Shell

The easiest way to start using Spark is through the Scala shell:

./bin/spark-shell

Try the following command, which should return 1000:

scala> sc.parallelize(1 to 1000).count()

Interactive Python Shell

Alternatively, if you prefer Python, you can use the Python shell:

./bin/pyspark

And run the following command, which should also return 1000:

>>> sc.parallelize(range(1000)).count()

Example Programs

Spark also comes with several sample programs in the examples directory. To run one of them, use ./bin/run-example <class> [params]. For example:

./bin/run-example SparkPi

will run the Pi example locally.

You can set the MASTER environment variable when running examples to submit examples to a cluster. This can be a mesos:// or spark:// URL, "yarn" to run on YARN, and "local" to run locally with one thread, or "local[N]" to run locally with N threads. You can also use an abbreviated class name if the class is in the examples package. For instance:

MASTER=spark://host:7077 ./bin/run-example SparkPi

Many of the example programs print usage help if no params are given.

Running Tests

Testing first requires building Spark. Once Spark is built, tests can be run using:

./dev/run-tests

Please see the guidance on how to run tests for a module, or individual tests.

There is also a Kubernetes integration test, see resource-managers/kubernetes/integration-tests/README.md

A Note About Hadoop Versions

Spark uses the Hadoop core library to talk to HDFS and other Hadoop-supported storage systems. Because the protocols have changed in different versions of Hadoop, you must build Spark against the same version that your cluster runs.

Please refer to the build documentation at "Specifying the Hadoop Version and Enabling YARN" for detailed guidance on building for a particular distribution of Hadoop, including building for particular Hive and Hive Thriftserver distributions.

Configuration

Please refer to the Configuration Guide in the online documentation for an overview on how to configure Spark.

Contributing

Please review the Contribution to Spark guide for information on how to get started contributing to the project.

About

Serverless Apache Spark On AWS Fargate

Topics

Resources

License

Apache-2.0, Apache-2.0 licenses found

Licenses found

Apache-2.0
LICENSE
Apache-2.0
LICENSE-binary

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Scala 73.4%
  • Java 9.0%
  • Python 7.4%
  • HiveQL 4.7%
  • R 3.0%
  • Shell 0.5%
  • Other 2.0%