Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion content/tutorial-deep-learning-on-mnist.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ This tutorial was adapted from the work by [Andrew Trask](https://github.com/iam

The reader should have some knowledge of Python, NumPy array manipulation, and linear algebra. In addition, you should be familiar with main concepts of [deep learning](https://en.wikipedia.org/wiki/Deep_learning).

To refresh the memory, you can take the [Python](https://docs.python.org/dev/tutorial/index.html) and [Linear algebra on n-dimensional arrays](https://numpy.org/doc/stable/user/tutorial-svd.html) tutorials.
To refresh the memory, you can take the [Python](https://docs.python.org/dev/tutorial/index.html) and [Linear algebra on n-dimensional arrays](https://numpy.org/numpy-tutorials/content/tutorial-svd.html) tutorials.

You are advised to read the [Deep learning](http://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf) paper published in 2015 by Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, who are regarded as some of the pioneers of the field. You should also consider reading Andrew Trask's [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning), which teaches deep learning with NumPy.

Expand Down
Loading