-
-
Notifications
You must be signed in to change notification settings - Fork 11.3k
Closed
Description
My main purpose is only store data in float16, then convert to float32 for doing computation
However, the convertion largely change the precision of the number when convert float16 back to float32.
Since the byte conversion process seems to ignore the precision, is there any better way to store float in float16 dtype ?
from __future__ import print_function, division, absolute_import
import numpy as np
np.random.seed(1208)
x = np.random.rand(1)
print(x, x.dtype)
x = x.astype('float32')
print(x, x.dtype)
print('Convert:')
x1 = np.cast['float16'](x)
print(x1, x1.dtype)
x1 = x1.astype('float32')
print(x1, x1.dtype)
print('Round and Convert:')
print(np.around(x, 6), np.around(x, 6).dtype)
x2 = np.cast['float16'](np.around(x, 6))
print(x2, x2.dtype)
x2 = x2.astype('float32')
print(x2, x2.dtype)
Output:
[ 0.0429911] float64
[ 0.0429911] float32
Convert:
[ 0.04299927] float16
[ 0.04299927] float32
Round and Convert:
[ 0.042991] float32
[ 0.04299927] float16
[ 0.04299927] float32
float16 always drop more precision than rounding the number, given the fact that it can preserve precision upto 4 number in the fraction
from __future__ import print_function, division, absolute_import
import numpy as np
np.random.seed(1208)
X = np.random.rand(12, 12)
X16 = X.astype('float16').astype('float32')
XR = np.around(X, decimals=4)
print('Float16:', np.sum(np.abs(X - X16)))
print('Round:', np.sum(np.abs(X - XR)))
Metadata
Metadata
Assignees
Labels
No labels