@@ -652,9 +652,9 @@ A simple example could be:
652652
653653 Examples
654654 --------
655- >>> s = pd.Series(['Ant', 'Bear', 'Cow', 'Dog', 'Falcon',
655+ >>> ser = pd.Series(['Ant', 'Bear', 'Cow', 'Dog', 'Falcon',
656656 ... 'Lion', 'Monkey', 'Rabbit', 'Zebra'])
657- >>> s .head()
657+ >>> ser .head()
658658 0 Ant
659659 1 Bear
660660 2 Cow
@@ -664,7 +664,7 @@ A simple example could be:
664664
665665 With the ``n`` parameter, we can change the number of returned rows:
666666
667- >>> s .head(n=3)
667+ >>> ser .head(n=3)
668668 0 Ant
669669 1 Bear
670670 2 Cow
@@ -695,10 +695,10 @@ and avoiding aliases. Avoid excessive imports, but if needed, imports from
695695the standard library go first, followed by third-party libraries (like
696696matplotlib).
697697
698- When illustrating examples with a single ``Series `` use the name ``s ``, and if
698+ When illustrating examples with a single ``Series `` use the name ``ser ``, and if
699699illustrating with a single ``DataFrame `` use the name ``df ``. For indices,
700700``idx `` is the preferred name. If a set of homogeneous ``Series `` or
701- ``DataFrame `` is used, name them ``s1 ``, ``s2 ``, ``s3 ``... or ``df1 ``,
701+ ``DataFrame `` is used, name them ``ser1 ``, ``ser2 ``, ``ser3 ``... or ``df1 ``,
702702``df2 ``, ``df3 ``... If the data is not homogeneous, and more than one structure
703703is needed, name them with something meaningful, for example ``df_main `` and
704704``df_to_join ``.
@@ -731,8 +731,8 @@ positional arguments ``head(3)``.
731731
732732 Examples
733733 --------
734- >>> s = pd.Series([1, 2, 3])
735- >>> s .mean()
734+ >>> ser = pd.Series([1, 2, 3])
735+ >>> ser .mean()
736736 2
737737 """
738738 pass
@@ -744,8 +744,8 @@ positional arguments ``head(3)``.
744744
745745 Examples
746746 --------
747- >>> s = pd.Series([1, np.nan, 3])
748- >>> s .fillna(0)
747+ >>> ser = pd.Series([1, np.nan, 3])
748+ >>> ser .fillna(0)
749749 [1, 0, 3]
750750 """
751751 pass
@@ -756,10 +756,10 @@ positional arguments ``head(3)``.
756756
757757 Examples
758758 --------
759- >>> s = pd.Series([380., 370., 24., 26],
759+ >>> ser = pd.Series([380., 370., 24., 26],
760760 ... name='max_speed',
761761 ... index=['falcon', 'falcon', 'parrot', 'parrot'])
762- >>> s .groupby_mean()
762+ >>> ser .groupby_mean()
763763 index
764764 falcon 375.0
765765 parrot 25.0
@@ -776,8 +776,8 @@ positional arguments ``head(3)``.
776776
777777 Examples
778778 --------
779- >>> s = pd.Series('Antelope', 'Lion', 'Zebra', np.nan)
780- >>> s .contains(pattern='a')
779+ >>> ser = pd.Series('Antelope', 'Lion', 'Zebra', np.nan)
780+ >>> ser .contains(pattern='a')
781781 0 False
782782 1 False
783783 2 True
@@ -800,7 +800,7 @@ positional arguments ``head(3)``.
800800
801801 We can fill missing values in the output using the ``na`` parameter:
802802
803- >>> s .contains(pattern='a', na=False)
803+ >>> ser .contains(pattern='a', na=False)
804804 0 False
805805 1 False
806806 2 True
@@ -920,8 +920,8 @@ plot will be generated automatically when building the documentation.
920920 .. plot::
921921 :context: close-figs
922922
923- >>> s = pd.Series([1, 2, 3])
924- >>> s .plot()
923+ >>> ser = pd.Series([1, 2, 3])
924+ >>> ser .plot()
925925 """
926926 pass
927927
0 commit comments