1212 },
1313 {
1414 "cell_type" : " code" ,
15- "execution_count" : 1 ,
15+ "execution_count" : 2 ,
1616 "id" : " simplified-summit" ,
1717 "metadata" : {},
1818 "outputs" : [
1919 {
20- "output_type" : " execute_result" ,
2120 "data" : {
2221 "text/plain" : [
2322 " Gender object\n " ,
3534 " dtype: object"
3635 ]
3736 },
37+ "execution_count" : 2 ,
3838 "metadata" : {},
39- "execution_count " : 1
39+ "output_type " : " execute_result "
4040 }
4141 ],
4242 "source" : [
4949 },
5050 {
5151 "cell_type" : " code" ,
52- "execution_count" : 2 ,
52+ "execution_count" : 3 ,
5353 "id" : " configured-clinton" ,
5454 "metadata" : {},
5555 "outputs" : [
5656 {
57- "output_type" : " execute_result" ,
5857 "data" : {
5958 "text/plain" : [
6059 " (614, 12)"
6160 ]
6261 },
62+ "execution_count" : 3 ,
6363 "metadata" : {},
64- "execution_count " : 2
64+ "output_type " : " execute_result "
6565 }
6666 ],
6767 "source" : [
130130 "metadata" : {},
131131 "outputs" : [
132132 {
133- "output_type" : " stream" ,
134133 "name" : " stdout" ,
134+ "output_type" : " stream" ,
135135 "text" : [
136- " Time taken: 0.014804840087890625 \n "
136+ " Time taken: 0.010515928268432617 \n "
137137 ]
138138 }
139139 ],
230230 "metadata" : {},
231231 "outputs" : [
232232 {
233- "output_type" : " execute_result" ,
234233 "data" : {
235234 "text/plain" : [
236235 " KNeighborsClassifier(n_neighbors=3)"
237236 ]
238237 },
238+ "execution_count" : 12 ,
239239 "metadata" : {},
240- "execution_count " : 12
240+ "output_type " : " execute_result "
241241 }
242242 ],
243243 "source" : [
274274 "metadata" : {},
275275 "outputs" : [
276276 {
277- "output_type" : " execute_result" ,
278277 "data" : {
279278 "text/plain" : [
280279 " True"
281280 ]
282281 },
282+ "execution_count" : 15 ,
283283 "metadata" : {},
284- "execution_count " : 15
284+ "output_type " : " execute_result "
285285 }
286286 ],
287287 "source" : [
295295 "metadata" : {},
296296 "outputs" : [
297297 {
298- "output_type" : " execute_result" ,
299298 "data" : {
300299 "text/plain" : [
301300 " ScaleTestEstimator(classifier=DecisionTreeClassifier(), num_iters=50)"
302301 ]
303302 },
303+ "execution_count" : 16 ,
304304 "metadata" : {},
305- "execution_count " : 16
305+ "output_type " : " execute_result "
306306 }
307307 ],
308308 "source" : [
332332 "metadata" : {},
333333 "outputs" : [
334334 {
335- "output_type" : " stream" ,
336335 "name" : " stdout" ,
336+ "output_type" : " stream" ,
337337 "text" : [
338- " time taken: 9.157356023788452 \n "
338+ " time taken: 9.11965799331665 \n "
339339 ]
340340 }
341341 ],
369369 {
370370 "data" : {
371371 "text/plain" : [
372- " array([0.18937852 , 0.11576017 , 0.15804519 , 0.0422178 , 0.29690848 ,\n " ,
373- " 0. , 0.01586572 , 0.0056865 , 0.01781055 , 0.00389469 ,\n " ,
374- " 0. , 0.02261156 , 0.03051274 , 0.00307078 , 0.00307078 ,\n " ,
375- " 0.00690926 , 0.01138089 , 0.00499624 , 0.02322422 , 0.00829843 ,\n " ,
376- " 0.01728413 , 0.01025423 , 0.01281911 , 0. ])"
372+ " array([0.25963757 , 0.12413346 , 0.15603435 , 0.02163518 , 0.26895302 ,\n " ,
373+ " 0.02420672, 0. , 0.00735991 , 0.01356057 , 0.02023574 ,\n " ,
374+ " 0. , 0.016999 , 0.00676174 , 0.00954828 , 0.00981587 ,\n " ,
375+ " 0. , 0.01254879 , 0.00851478 , 0.01445153 , 0. ,\n " ,
376+ " 0. , 0.00044522 , 0.01758959 , 0.00756869 ])"
377377 ]
378378 },
379379 "execution_count" : 18 ,
387387 },
388388 {
389389 "cell_type" : " code" ,
390- "execution_count" : 18 ,
390+ "execution_count" : 19 ,
391391 "id" : " coordinate-gossip" ,
392392 "metadata" : {},
393- "outputs" : [
394- {
395- "output_type" : " error" ,
396- "ename" : " ModuleNotFoundError" ,
397- "evalue" : " No module named 'ray'" ,
398- "traceback" : [
399- " \u001b [0;31m---------------------------------------------------------------------------\u001b [0m" ,
400- " \u001b [0;31mModuleNotFoundError\u001b [0m Traceback (most recent call last)" ,
401- " \u001b [0;32m<ipython-input-18-b94c8db5a623>\u001b [0m in \u001b [0;36m<module>\u001b [0;34m\u001b [0m\n \u001b [0;32m----> 1\u001b [0;31m \u001b [0;32mimport\u001b [0m \u001b [0mray\u001b [0m\u001b [0;34m\u001b [0m\u001b [0;34m\u001b [0m\u001b [0m\n \u001b [0m\u001b [1;32m 2\u001b [0m \u001b [0mray\u001b [0m\u001b [0;34m.\u001b [0m\u001b [0mshutdown\u001b [0m\u001b [0;34m(\u001b [0m\u001b [0;34m)\u001b [0m\u001b [0;34m\u001b [0m\u001b [0;34m\u001b [0m\u001b [0m\n " ,
402- " \u001b [0;31mModuleNotFoundError\u001b [0m: No module named 'ray'"
403- ]
404- }
405- ],
393+ "outputs" : [],
406394 "source" : [
407395 " import ray\n " ,
408396 " ray.shutdown()"
409397 ]
410398 },
411399 {
412400 "cell_type" : " code" ,
413- "execution_count" : null ,
401+ "execution_count" : 20 ,
414402 "id" : " bfe20bd8" ,
415403 "metadata" : {},
416- "outputs" : [],
404+ "outputs" : [
405+ {
406+ "name" : " stderr" ,
407+ "output_type" : " stream" ,
408+ "text" : [
409+ " 2021-06-12 19:04:59,104\t INFO services.py:1267 -- View the Ray dashboard at \u001b [1m\u001b [32mhttp://127.0.0.1:8265\u001b [39m\u001b [22m\n "
410+ ]
411+ },
412+ {
413+ "data" : {
414+ "text/plain" : [
415+ " {'node_ip_address': '192.168.86.160',\n " ,
416+ " 'raylet_ip_address': '192.168.86.160',\n " ,
417+ " 'redis_address': '192.168.86.160:6379',\n " ,
418+ " 'object_store_address': '/tmp/ray/session_2021-06-12_19-04-57_727692_23228/sockets/plasma_store',\n " ,
419+ " 'raylet_socket_name': '/tmp/ray/session_2021-06-12_19-04-57_727692_23228/sockets/raylet',\n " ,
420+ " 'webui_url': '127.0.0.1:8265',\n " ,
421+ " 'session_dir': '/tmp/ray/session_2021-06-12_19-04-57_727692_23228',\n " ,
422+ " 'metrics_export_port': 57599,\n " ,
423+ " 'node_id': '2942ae78a25dfdfabdde6aee3dd586a83644c3b3c51615cc864d7c93'}"
424+ ]
425+ },
426+ "execution_count" : 20 ,
427+ "metadata" : {},
428+ "output_type" : " execute_result"
429+ }
430+ ],
417431 "source" : [
418432 " ray.init()"
419433 ]
506520 "name" : " stdout" ,
507521 "output_type" : " stream" ,
508522 "text" : [
509- " Time taken: 9.811173915863037 \n "
523+ " Time taken: 7.180877923965454 \n "
510524 ]
511525 }
512526 ],
532546 {
533547 "data" : {
534548 "text/plain" : [
535- " [<codeflare.pipelines.Datamodel.XYRef at 0x7f95d8b9f550 >]"
549+ " [<codeflare.pipelines.Datamodel.XYRef at 0x186fe9c10 >]"
536550 ]
537551 },
538552 "execution_count" : 29 ,
564578 "name" : " stdout" ,
565579 "output_type" : " stream" ,
566580 "text" : [
567- " preprocess=\r\n " ,
568- " c_a=preprocess \r\n " ,
581+ " preprocess{'n_jobs': None, 'remainder': 'drop', 'sparse_threshold': 0.3, 'transformer_weights': None, 'transformers': [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),\n " ,
582+ " ('scaler', StandardScaler())]), Index(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',\n " ,
583+ " 'Loan_Amount_Term', 'Credit_History'],\n " ,
584+ " dtype='object')), ('cat', Pipeline(steps=[('imputer',\n " ,
585+ " SimpleImputer(fill_value='missing', strategy='constant')),\n " ,
586+ " ('onehot', OneHotEncoder(handle_unknown='ignore'))]), Index(['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed',\n " ,
587+ " 'Property_Area'],\n " ,
588+ " dtype='object'))], 'verbose': False, 'num': Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),\n " ,
589+ " ('scaler', StandardScaler())]), 'cat': Pipeline(steps=[('imputer',\n " ,
590+ " SimpleImputer(fill_value='missing', strategy='constant')),\n " ,
591+ " ('onehot', OneHotEncoder(handle_unknown='ignore'))]), 'num__memory': None, 'num__steps': [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())], 'num__verbose': False, 'num__imputer': SimpleImputer(strategy='median'), 'num__scaler': StandardScaler(), 'num__imputer__add_indicator': False, 'num__imputer__copy': True, 'num__imputer__fill_value': None, 'num__imputer__missing_values': nan, 'num__imputer__strategy': 'median', 'num__imputer__verbose': 0, 'num__scaler__copy': True, 'num__scaler__with_mean': True, 'num__scaler__with_std': True, 'cat__memory': None, 'cat__steps': [('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))], 'cat__verbose': False, 'cat__imputer': SimpleImputer(fill_value='missing', strategy='constant'), 'cat__onehot': OneHotEncoder(handle_unknown='ignore'), 'cat__imputer__add_indicator': False, 'cat__imputer__copy': True, 'cat__imputer__fill_value': 'missing', 'cat__imputer__missing_values': nan, 'cat__imputer__strategy': 'constant', 'cat__imputer__verbose': 0, 'cat__onehot__categories': 'auto', 'cat__onehot__drop': None, 'cat__onehot__dtype': <class 'numpy.float64'>, 'cat__onehot__handle_unknown': 'ignore', 'cat__onehot__sparse': True}=\n",
592+ " c_a{'classifier__ccp_alpha': 0.0, 'classifier__class_weight': None, 'classifier__criterion': 'gini', 'classifier__max_depth': None, 'classifier__max_features': None, 'classifier__max_leaf_nodes': None, 'classifier__min_impurity_decrease': 0.0, 'classifier__min_impurity_split': None, 'classifier__min_samples_leaf': 1, 'classifier__min_samples_split': 2, 'classifier__min_weight_fraction_leaf': 0.0, 'classifier__random_state': None, 'classifier__splitter': 'best', 'classifier': DecisionTreeClassifier(), 'num_iters': 50}=preprocess{'n_jobs': None, 'remainder': 'drop', 'sparse_threshold': 0.3, 'transformer_weights': None, 'transformers': [('num', Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),\n " ,
593+ " ('scaler', StandardScaler())]), Index(['ApplicantIncome', 'CoapplicantIncome', 'LoanAmount',\n " ,
594+ " 'Loan_Amount_Term', 'Credit_History'],\n " ,
595+ " dtype='object')), ('cat', Pipeline(steps=[('imputer',\n " ,
596+ " SimpleImputer(fill_value='missing', strategy='constant')),\n " ,
597+ " ('onehot', OneHotEncoder(handle_unknown='ignore'))]), Index(['Gender', 'Married', 'Dependents', 'Education', 'Self_Employed',\n " ,
598+ " 'Property_Area'],\n " ,
599+ " dtype='object'))], 'verbose': False, 'num': Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),\n " ,
600+ " ('scaler', StandardScaler())]), 'cat': Pipeline(steps=[('imputer',\n " ,
601+ " SimpleImputer(fill_value='missing', strategy='constant')),\n " ,
602+ " ('onehot', OneHotEncoder(handle_unknown='ignore'))]), 'num__memory': None, 'num__steps': [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler())], 'num__verbose': False, 'num__imputer': SimpleImputer(strategy='median'), 'num__scaler': StandardScaler(), 'num__imputer__add_indicator': False, 'num__imputer__copy': True, 'num__imputer__fill_value': None, 'num__imputer__missing_values': nan, 'num__imputer__strategy': 'median', 'num__imputer__verbose': 0, 'num__scaler__copy': True, 'num__scaler__with_mean': True, 'num__scaler__with_std': True, 'cat__memory': None, 'cat__steps': [('imputer', SimpleImputer(fill_value='missing', strategy='constant')), ('onehot', OneHotEncoder(handle_unknown='ignore'))], 'cat__verbose': False, 'cat__imputer': SimpleImputer(fill_value='missing', strategy='constant'), 'cat__onehot': OneHotEncoder(handle_unknown='ignore'), 'cat__imputer__add_indicator': False, 'cat__imputer__copy': True, 'cat__imputer__fill_value': 'missing', 'cat__imputer__missing_values': nan, 'cat__imputer__strategy': 'constant', 'cat__imputer__verbose': 0, 'cat__onehot__categories': 'auto', 'cat__onehot__drop': None, 'cat__onehot__dtype': <class 'numpy.float64'>, 'cat__onehot__handle_unknown': 'ignore', 'cat__onehot__sparse': True} \n",
569603 " \n "
570604 ]
571605 }
584618 }
585619 ],
586620 "metadata" : {
621+ "interpreter" : {
622+ "hash" : " aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
623+ },
587624 "kernelspec" : {
588- "name" : " python3" ,
589- "display_name" : " Python 3.9.2 64-bit"
625+ "display_name" : " Python 3" ,
626+ "language" : " python" ,
627+ "name" : " python3"
590628 },
591629 "language_info" : {
592630 "codemirror_mode" : {
598636 "name" : " python" ,
599637 "nbconvert_exporter" : " python" ,
600638 "pygments_lexer" : " ipython3" ,
601- "version" : " 3.9.2"
602- },
603- "interpreter" : {
604- "hash" : " aee8b7b246df8f9039afb4144a1f6fd8d2ca17a180786b69acc140d282b71a49"
639+ "version" : " 3.8.6"
605640 }
606641 },
607642 "nbformat" : 4 ,
608643 "nbformat_minor" : 5
609- }
644+ }
0 commit comments