|
| 1 | +import pytest |
| 2 | +import ray |
| 3 | + |
| 4 | +# Taking an example from sklearn pipeline to assert that |
| 5 | +# the classification report from a rediction from sklearn pipeline is |
| 6 | +# the same as that from the converted codeflare pipeline |
| 7 | + |
| 8 | +from sklearn import set_config |
| 9 | +set_config(display='diagram') |
| 10 | +from sklearn.datasets import make_classification |
| 11 | +from sklearn.model_selection import train_test_split |
| 12 | +from sklearn.feature_selection import SelectKBest, f_classif |
| 13 | +from sklearn.pipeline import make_pipeline |
| 14 | +from sklearn.svm import LinearSVC |
| 15 | +from sklearn.metrics import classification_report |
| 16 | + |
| 17 | +import codeflare.pipelines.Datamodel as dm |
| 18 | +import codeflare.pipelines.Runtime as rt |
| 19 | +from codeflare.pipelines.Datamodel import Xy |
| 20 | +from codeflare.pipelines.Datamodel import XYRef |
| 21 | +from codeflare.pipelines.Runtime import ExecutionType |
| 22 | + |
| 23 | +# |
| 24 | +# prediction from an sklearn pipeline |
| 25 | +# |
| 26 | + |
| 27 | +def test_pipeline_predict(): |
| 28 | + |
| 29 | + ray.shutdown() |
| 30 | + ray.init() |
| 31 | + |
| 32 | + # |
| 33 | + # prediction from an sklearn pipeline |
| 34 | + # |
| 35 | + X, y = make_classification( |
| 36 | + n_features=20, n_informative=3, n_redundant=0, n_classes=2, |
| 37 | + n_clusters_per_class=2, random_state=42) |
| 38 | + X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) |
| 39 | + |
| 40 | + anova_filter = SelectKBest(f_classif, k=3) |
| 41 | + clf = LinearSVC() |
| 42 | + |
| 43 | + anova_svm = make_pipeline(anova_filter, clf) |
| 44 | + anova_svm.fit(X_train, y_train) |
| 45 | + |
| 46 | + y_pred = anova_svm.predict(X_test) |
| 47 | + |
| 48 | + report_sklearn = classification_report(y_test, y_pred) |
| 49 | + print(report_sklearn) |
| 50 | + |
| 51 | + # |
| 52 | + # constructing a codeflare pipeline |
| 53 | + # |
| 54 | + pipeline = dm.Pipeline() |
| 55 | + node_anova_filter = dm.EstimatorNode('anova_filter', anova_filter) |
| 56 | + node_clf = dm.EstimatorNode('clf', clf) |
| 57 | + pipeline.add_edge(node_anova_filter, node_clf) |
| 58 | + |
| 59 | + pipeline_input = dm.PipelineInput() |
| 60 | + xy = dm.Xy(X_train, y_train) |
| 61 | + |
| 62 | + pipeline_input.add_xy_arg(node_anova_filter, xy) |
| 63 | + |
| 64 | + pipeline_output = rt.execute_pipeline(pipeline, ExecutionType.FIT, pipeline_input) |
| 65 | + |
| 66 | + node_clf_output = pipeline_output.get_xyrefs(node_clf) |
| 67 | + |
| 68 | + Xout = ray.get(node_clf_output[0].get_Xref()) |
| 69 | + yout = ray.get(node_clf_output[0].get_yref()) |
| 70 | + |
| 71 | + selected_pipeline = rt.select_pipeline(pipeline_output, node_clf_output[0]) |
| 72 | + |
| 73 | + pipeline_input = dm.PipelineInput() |
| 74 | + pipeline_input.add_xy_arg(node_anova_filter, dm.Xy(X_test, y_test)) |
| 75 | + |
| 76 | + predict_output = rt.execute_pipeline(selected_pipeline, ExecutionType.PREDICT, pipeline_input) |
| 77 | + |
| 78 | + predict_clf_output = predict_output.get_xyrefs(node_clf) |
| 79 | + |
| 80 | + #y_pred = ray.get(predict_clf_output[0].get_yref()) |
| 81 | + y_pred = ray.get(predict_clf_output[0].get_Xref()) |
| 82 | + |
| 83 | + |
| 84 | + report_codeflare = classification_report(y_test, y_pred) |
| 85 | + |
| 86 | + print(report_codeflare) |
| 87 | + |
| 88 | + assert(report_sklearn == report_codeflare) |
| 89 | + |
| 90 | + ray.shutdown() |
| 91 | + |
| 92 | + |
| 93 | +if __name__ == "__main__": |
| 94 | + sys.exit(pytest.main(["-v", __file__])) |
| 95 | + |
0 commit comments