|
| 1 | +import pytest |
| 2 | +import ray |
| 3 | +import pandas as pd |
| 4 | +from sklearn.model_selection import train_test_split |
| 5 | +from sklearn.pipeline import Pipeline |
| 6 | +from sklearn.impute import SimpleImputer |
| 7 | +from sklearn.preprocessing import StandardScaler, OneHotEncoder |
| 8 | +from hercules.Datamodel import Xy |
| 9 | +from hercules.Datamodel import XYRef |
| 10 | +import hercules.Datamodel as dm |
| 11 | +import hercules.RuntimeNew as rt |
| 12 | +from hercules.RuntimeNew import ExecutionType |
| 13 | + |
| 14 | +def test_or(): |
| 15 | + |
| 16 | + ray.init() |
| 17 | + |
| 18 | + train = pd.read_csv('../resources/data/train_ctrUa4K.csv') |
| 19 | + test = pd.read_csv('../resources/data/test_lAUu6dG.csv') |
| 20 | + |
| 21 | + X = train.drop('Loan_Status', axis=1) |
| 22 | + y = train['Loan_Status'] |
| 23 | + |
| 24 | + X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) |
| 25 | + |
| 26 | + X_ref = ray.put(X_train) |
| 27 | + y_ref = ray.put(y_train) |
| 28 | + |
| 29 | + Xy_ref = XYRef(X_ref, y_ref) |
| 30 | + Xy_ref_list = [Xy_ref] |
| 31 | + |
| 32 | + pipeline = dm.Pipeline() |
| 33 | + node_a = dm.OrNode('preprocess', preprocessor) |
| 34 | + node_b = dm.OrNode('c_a', c_a) |
| 35 | + node_c = dm.OrNode('c_b', c_b) |
| 36 | + |
| 37 | + pipeline.add_edge(node_a, node_b) |
| 38 | + pipeline.add_edge(node_a, node_c) |
| 39 | + |
| 40 | + in_args={node_a: Xy_ref_list} |
| 41 | + out_args = rt.execute_pipeline(pipeline, ExecutionType.FIT, in_args) |
| 42 | + |
| 43 | + node_b_out_args = ray.get(out_args[node_b]) |
| 44 | + node_c_out_args = ray.get(out_args[node_c]) |
| 45 | + |
| 46 | + b_out_xyref = node_b_out_args[0] |
| 47 | + |
| 48 | + ray.get(b_out_xyref.get_Xref()) |
| 49 | + |
| 50 | + |
| 51 | +if __name__ == "__main__": |
| 52 | + sys.exit(pytest.main(["-v", __file__])) |
| 53 | + |
| 54 | + |
0 commit comments