|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "%matplotlib inline" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "\n", |
| 17 | + "# Pipeline ANOVA SVM\n", |
| 18 | + "\n", |
| 19 | + "This example shows how a feature selection can be easily integrated within\n", |
| 20 | + "a machine learning pipeline.\n", |
| 21 | + "\n", |
| 22 | + "We also show that you can easily introspect part of the pipeline.\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 9, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "name": "stdout", |
| 32 | + "output_type": "stream", |
| 33 | + "text": [ |
| 34 | + "Automatically created module for IPython interactive environment\n", |
| 35 | + " precision recall f1-score support\n", |
| 36 | + "\n", |
| 37 | + " 0 0.92 0.80 0.86 15\n", |
| 38 | + " 1 0.75 0.90 0.82 10\n", |
| 39 | + "\n", |
| 40 | + " accuracy 0.84 25\n", |
| 41 | + " macro avg 0.84 0.85 0.84 25\n", |
| 42 | + "weighted avg 0.85 0.84 0.84 25\n", |
| 43 | + "\n" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "data": { |
| 48 | + "text/plain": [ |
| 49 | + "array([[0. , 0. , 0.75791043, 0. , 0. ,\n", |
| 50 | + " 0. , 0. , 0. , 0. , 0.27158921,\n", |
| 51 | + " 0. , 0. , 0. , 0. , 0. ,\n", |
| 52 | + " 0. , 0. , 0. , 0. , 0.26109702]])" |
| 53 | + ] |
| 54 | + }, |
| 55 | + "execution_count": 9, |
| 56 | + "metadata": {}, |
| 57 | + "output_type": "execute_result" |
| 58 | + } |
| 59 | + ], |
| 60 | + "source": [ |
| 61 | + "print(__doc__)\n", |
| 62 | + "\n", |
| 63 | + "from sklearn import set_config\n", |
| 64 | + "set_config(display='diagram')\n", |
| 65 | + "from sklearn.datasets import make_classification\n", |
| 66 | + "from sklearn.model_selection import train_test_split\n", |
| 67 | + "\n", |
| 68 | + "X, y = make_classification(\n", |
| 69 | + " n_features=20, n_informative=3, n_redundant=0, n_classes=2,\n", |
| 70 | + " n_clusters_per_class=2, random_state=42)\n", |
| 71 | + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)\n", |
| 72 | + "\n", |
| 73 | + "from sklearn.feature_selection import SelectKBest, f_classif\n", |
| 74 | + "from sklearn.pipeline import make_pipeline\n", |
| 75 | + "from sklearn.svm import LinearSVC\n", |
| 76 | + "\n", |
| 77 | + "anova_filter = SelectKBest(f_classif, k=3)\n", |
| 78 | + "clf = LinearSVC()\n", |
| 79 | + "anova_svm = make_pipeline(anova_filter, clf)\n", |
| 80 | + "anova_svm.fit(X_train, y_train)\n", |
| 81 | + "\n", |
| 82 | + "from sklearn.metrics import classification_report\n", |
| 83 | + "\n", |
| 84 | + "y_pred = anova_svm.predict(X_test)\n", |
| 85 | + "print(classification_report(y_test, y_pred))\n", |
| 86 | + "\n", |
| 87 | + "anova_svm[-1].coef_\n", |
| 88 | + "\n", |
| 89 | + "anova_svm[:-1].inverse_transform(anova_svm[-1].coef_)\n" |
| 90 | + ] |
| 91 | + }, |
| 92 | + { |
| 93 | + "cell_type": "code", |
| 94 | + "execution_count": 11, |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [ |
| 97 | + { |
| 98 | + "name": "stderr", |
| 99 | + "output_type": "stream", |
| 100 | + "text": [ |
| 101 | + "2021-06-02 09:20:27,751\tINFO services.py:1267 -- View the Ray dashboard at \u001b[1m\u001b[32mhttp://127.0.0.1:8266\u001b[39m\u001b[22m\n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "ename": "RayTaskError(ValueError)", |
| 106 | + "evalue": "\u001b[36mray::execute_or_node_remote()\u001b[39m (pid=29747, ip=192.168.1.5)\n File \"python/ray/_raylet.pyx\", line 505, in ray._raylet.execute_task\n File \"/opt/anaconda3/lib/python3.8/site-packages/codeflare_pipelines-1.0.0-py3.8.egg/codeflare/pipelines/Runtime.py\", line 23, in execute_or_node_remote\n File \"/opt/anaconda3/lib/python3.8/site-packages/ray/_private/client_mode_hook.py\", line 47, in wrapper\n return func(*args, **kwargs)\nValueError: 'object_refs' must either be an object ref or a list of object refs.", |
| 107 | + "output_type": "error", |
| 108 | + "traceback": [ |
| 109 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 110 | + "\u001b[0;31mRayTaskError(ValueError)\u001b[0m Traceback (most recent call last)", |
| 111 | + "\u001b[0;32m<ipython-input-11-5c12286d6a83>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mpredict_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mrt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexecute_pipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mselected_pipeline\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mExecutionType\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPREDICT\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpipeline_input\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mpredict_clf_output\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpredict_output\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_xyrefs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode_clf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0my_pred\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpredict_clf_output\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_yref\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
| 112 | + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/codeflare_pipelines-1.0.0-py3.8.egg/codeflare/pipelines/Datamodel.py\u001b[0m in \u001b[0;36mget_xyrefs\u001b[0;34m(self, node)\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mpe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mPipelineNodeNotFoundException\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Node \"\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\" not found\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 398\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 399\u001b[0;31m \u001b[0mxyrefs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxyrefs_ptr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 400\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mxyrefs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 401\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
| 113 | + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/ray/_private/client_mode_hook.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mclient_mode_should_convert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mray\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 48\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 114 | + "\u001b[0;32m/opt/anaconda3/lib/python3.8/site-packages/ray/worker.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(object_refs, timeout)\u001b[0m\n\u001b[1;32m 1479\u001b[0m \u001b[0mworker\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore_worker\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump_object_store_memory_usage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1480\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mRayTaskError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1481\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_instanceof_cause\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1482\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1483\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 115 | + "\u001b[0;31mRayTaskError(ValueError)\u001b[0m: \u001b[36mray::execute_or_node_remote()\u001b[39m (pid=29747, ip=192.168.1.5)\n File \"python/ray/_raylet.pyx\", line 505, in ray._raylet.execute_task\n File \"/opt/anaconda3/lib/python3.8/site-packages/codeflare_pipelines-1.0.0-py3.8.egg/codeflare/pipelines/Runtime.py\", line 23, in execute_or_node_remote\n File \"/opt/anaconda3/lib/python3.8/site-packages/ray/_private/client_mode_hook.py\", line 47, in wrapper\n return func(*args, **kwargs)\nValueError: 'object_refs' must either be an object ref or a list of object refs." |
| 116 | + ] |
| 117 | + } |
| 118 | + ], |
| 119 | + "source": [ |
| 120 | + "import ray\n", |
| 121 | + "import codeflare.pipelines.Datamodel as dm\n", |
| 122 | + "import codeflare.pipelines.Runtime as rt\n", |
| 123 | + "from codeflare.pipelines.Datamodel import Xy\n", |
| 124 | + "from codeflare.pipelines.Datamodel import XYRef\n", |
| 125 | + "from codeflare.pipelines.Runtime import ExecutionType\n", |
| 126 | + "\n", |
| 127 | + "ray.shutdown()\n", |
| 128 | + "ray.init()\n", |
| 129 | + "\n", |
| 130 | + "from sklearn import set_config\n", |
| 131 | + "set_config(display='diagram')\n", |
| 132 | + "from sklearn.datasets import make_classification\n", |
| 133 | + "from sklearn.model_selection import train_test_split\n", |
| 134 | + "\n", |
| 135 | + "X, y = make_classification(\n", |
| 136 | + " n_features=20, n_informative=3, n_redundant=0, n_classes=2,\n", |
| 137 | + " n_clusters_per_class=2, random_state=42)\n", |
| 138 | + "X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)\n", |
| 139 | + "\n", |
| 140 | + "from sklearn.feature_selection import SelectKBest, f_classif\n", |
| 141 | + "from sklearn.pipeline import make_pipeline\n", |
| 142 | + "from sklearn.svm import LinearSVC\n", |
| 143 | + "\n", |
| 144 | + "anova_filter = SelectKBest(f_classif, k=3)\n", |
| 145 | + "clf = LinearSVC()\n", |
| 146 | + "\n", |
| 147 | + "pipeline = dm.Pipeline()\n", |
| 148 | + "node_anova_filter = dm.EstimatorNode('anova_filter', anova_filter)\n", |
| 149 | + "node_clf = dm.EstimatorNode('clf', clf)\n", |
| 150 | + "pipeline.add_edge(node_anova_filter, node_clf)\n", |
| 151 | + "\n", |
| 152 | + "pipeline_input = dm.PipelineInput()\n", |
| 153 | + "xy = dm.Xy(X_train, y_train)\n", |
| 154 | + "\n", |
| 155 | + "pipeline_input.add_xy_arg(node_anova_filter, xy)\n", |
| 156 | + "\n", |
| 157 | + "pipeline_output = rt.execute_pipeline(pipeline, ExecutionType.FIT, pipeline_input)\n", |
| 158 | + "\n", |
| 159 | + "node_clf_output = pipeline_output.get_xyrefs(node_clf)\n", |
| 160 | + "\n", |
| 161 | + "Xout = ray.get(node_clf_output[0].get_Xref())\n", |
| 162 | + "yout = ray.get(node_clf_output[0].get_yref())\n", |
| 163 | + "\n", |
| 164 | + "selected_pipeline = rt.select_pipeline(pipeline_output, node_clf_output[0])\n", |
| 165 | + "\n", |
| 166 | + "pipeline_input = dm.PipelineInput()\n", |
| 167 | + "pipeline_input.add_xy_arg(node_anova_filter, dm.Xy(X_test, y_test))\n", |
| 168 | + "\n", |
| 169 | + "predict_output = rt.execute_pipeline(selected_pipeline, ExecutionType.PREDICT, pipeline_input)\n", |
| 170 | + "\n", |
| 171 | + "predict_clf_output = predict_output.get_xyrefs(node_clf)\n", |
| 172 | + "y_pred = ray.get(predict_clf_output[0].get_yref())\n", |
| 173 | + "\n", |
| 174 | + "from sklearn.metrics import classification_report\n", |
| 175 | + "\n", |
| 176 | + "#y_pred = anova_svm.predict(X_test)\n", |
| 177 | + "print(classification_report(y_test, y_pred))\n", |
| 178 | + "\n", |
| 179 | + "#anova_svm[-1].coef_\n", |
| 180 | + "\n", |
| 181 | + "#anova_svm[:-1].inverse_transform(anova_svm[-1].coef_)\n" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": null, |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [] |
| 190 | + } |
| 191 | + ], |
| 192 | + "metadata": { |
| 193 | + "kernelspec": { |
| 194 | + "display_name": "Python 3", |
| 195 | + "language": "python", |
| 196 | + "name": "python3" |
| 197 | + }, |
| 198 | + "language_info": { |
| 199 | + "codemirror_mode": { |
| 200 | + "name": "ipython", |
| 201 | + "version": 3 |
| 202 | + }, |
| 203 | + "file_extension": ".py", |
| 204 | + "mimetype": "text/x-python", |
| 205 | + "name": "python", |
| 206 | + "nbconvert_exporter": "python", |
| 207 | + "pygments_lexer": "ipython3", |
| 208 | + "version": "3.8.8" |
| 209 | + } |
| 210 | + }, |
| 211 | + "nbformat": 4, |
| 212 | + "nbformat_minor": 1 |
| 213 | +} |
0 commit comments