|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "id": "israeli-batch", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import ray" |
| 11 | + ] |
| 12 | + }, |
| 13 | + { |
| 14 | + "cell_type": "code", |
| 15 | + "execution_count": 2, |
| 16 | + "id": "loose-projector", |
| 17 | + "metadata": {}, |
| 18 | + "outputs": [], |
| 19 | + "source": [ |
| 20 | + "ray.shutdown()" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "code", |
| 25 | + "execution_count": 3, |
| 26 | + "id": "renewable-western", |
| 27 | + "metadata": {}, |
| 28 | + "outputs": [ |
| 29 | + { |
| 30 | + "name": "stderr", |
| 31 | + "output_type": "stream", |
| 32 | + "text": [ |
| 33 | + "2021-01-28 15:01:35,154\tINFO services.py:1166 -- View the Ray dashboard at \u001b[1m\u001b[32mhttp://127.0.0.1:8265\u001b[39m\u001b[22m\n" |
| 34 | + ] |
| 35 | + }, |
| 36 | + { |
| 37 | + "data": { |
| 38 | + "text/plain": [ |
| 39 | + "{'node_ip_address': '192.168.1.37',\n", |
| 40 | + " 'raylet_ip_address': '192.168.1.37',\n", |
| 41 | + " 'redis_address': '192.168.1.37:6379',\n", |
| 42 | + " 'object_store_address': '/tmp/ray/session_2021-01-28_15-01-34_643480_33619/sockets/plasma_store',\n", |
| 43 | + " 'raylet_socket_name': '/tmp/ray/session_2021-01-28_15-01-34_643480_33619/sockets/raylet',\n", |
| 44 | + " 'webui_url': '127.0.0.1:8265',\n", |
| 45 | + " 'session_dir': '/tmp/ray/session_2021-01-28_15-01-34_643480_33619',\n", |
| 46 | + " 'metrics_export_port': 55854}" |
| 47 | + ] |
| 48 | + }, |
| 49 | + "execution_count": 3, |
| 50 | + "metadata": {}, |
| 51 | + "output_type": "execute_result" |
| 52 | + } |
| 53 | + ], |
| 54 | + "source": [ |
| 55 | + "ray.init()" |
| 56 | + ] |
| 57 | + }, |
| 58 | + { |
| 59 | + "cell_type": "code", |
| 60 | + "execution_count": 4, |
| 61 | + "id": "scheduled-miami", |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [ |
| 65 | + "%config IPCompleter.use_jedi = False" |
| 66 | + ] |
| 67 | + }, |
| 68 | + { |
| 69 | + "cell_type": "code", |
| 70 | + "execution_count": 41, |
| 71 | + "id": "leading-sheriff", |
| 72 | + "metadata": {}, |
| 73 | + "outputs": [], |
| 74 | + "source": [ |
| 75 | + "import numpy as np\n", |
| 76 | + "from sklearn.preprocessing import FunctionTransformer\n", |
| 77 | + "from sklearn.preprocessing import Binarizer\n", |
| 78 | + "\n", |
| 79 | + "transformer = FunctionTransformer(np.log1p)\n", |
| 80 | + "binarizer = Binarizer(threshold=0.5)" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": 42, |
| 86 | + "id": "olive-usage", |
| 87 | + "metadata": {}, |
| 88 | + "outputs": [], |
| 89 | + "source": [ |
| 90 | + "import com.ibm.research.ray.graph.Datamodel as dm\n", |
| 91 | + "\n", |
| 92 | + "pipeline = dm.Pipeline()\n", |
| 93 | + "\n", |
| 94 | + "node_a = dm.Node('a', transformer)\n", |
| 95 | + "node_b = dm.Node('b', transformer)\n", |
| 96 | + "node_c = dm.Node('c', transformer)\n", |
| 97 | + "node_d = dm.Node('d', binarizer)\n", |
| 98 | + "\n", |
| 99 | + "pipeline.add_edge(node_a, node_b)\n", |
| 100 | + "pipeline.add_edge(node_b, node_c)\n", |
| 101 | + "pipeline.add_edge(node_b, node_d)" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": 34, |
| 107 | + "id": "behind-dairy", |
| 108 | + "metadata": {}, |
| 109 | + "outputs": [], |
| 110 | + "source": [ |
| 111 | + "X = np.array([0, 1, 2, 3])" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "code", |
| 116 | + "execution_count": 23, |
| 117 | + "id": "amended-gravity", |
| 118 | + "metadata": {}, |
| 119 | + "outputs": [ |
| 120 | + { |
| 121 | + "data": { |
| 122 | + "text/plain": [ |
| 123 | + "array([0. , 0.42303586, 0.55461836, 0.62580029])" |
| 124 | + ] |
| 125 | + }, |
| 126 | + "execution_count": 23, |
| 127 | + "metadata": {}, |
| 128 | + "output_type": "execute_result" |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "transformer.transform(transformer.transform(transformer.transform(X)))" |
| 133 | + ] |
| 134 | + }, |
| 135 | + { |
| 136 | + "cell_type": "code", |
| 137 | + "execution_count": 24, |
| 138 | + "id": "romance-sender", |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "xref = ray.put(X)" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": 35, |
| 148 | + "id": "handy-offset", |
| 149 | + "metadata": {}, |
| 150 | + "outputs": [], |
| 151 | + "source": [ |
| 152 | + "import com.ibm.research.ray.graph.Runtime as rt" |
| 153 | + ] |
| 154 | + }, |
| 155 | + { |
| 156 | + "cell_type": "code", |
| 157 | + "execution_count": 36, |
| 158 | + "id": "copyrighted-procurement", |
| 159 | + "metadata": {}, |
| 160 | + "outputs": [], |
| 161 | + "source": [ |
| 162 | + "in_args={node_a: [xref]}" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "code", |
| 167 | + "execution_count": 43, |
| 168 | + "id": "specialized-health", |
| 169 | + "metadata": { |
| 170 | + "scrolled": true |
| 171 | + }, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "out_args = rt.execute_pipeline(pipeline, in_args)" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "code", |
| 179 | + "execution_count": 44, |
| 180 | + "id": "binding-praise", |
| 181 | + "metadata": {}, |
| 182 | + "outputs": [ |
| 183 | + { |
| 184 | + "name": "stdout", |
| 185 | + "output_type": "stream", |
| 186 | + "text": [ |
| 187 | + "c\n", |
| 188 | + "d\n" |
| 189 | + ] |
| 190 | + } |
| 191 | + ], |
| 192 | + "source": [ |
| 193 | + "for key in out_args.keys():\n", |
| 194 | + " print(str(key))" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": 45, |
| 200 | + "id": "living-destiny", |
| 201 | + "metadata": {}, |
| 202 | + "outputs": [ |
| 203 | + { |
| 204 | + "data": { |
| 205 | + "text/plain": [ |
| 206 | + "[array([0. , 0.42303586, 0.55461836, 0.62580029])]" |
| 207 | + ] |
| 208 | + }, |
| 209 | + "execution_count": 45, |
| 210 | + "metadata": {}, |
| 211 | + "output_type": "execute_result" |
| 212 | + } |
| 213 | + ], |
| 214 | + "source": [ |
| 215 | + "ray.get(out_args[node_c])" |
| 216 | + ] |
| 217 | + }, |
| 218 | + { |
| 219 | + "cell_type": "code", |
| 220 | + "execution_count": 46, |
| 221 | + "id": "vanilla-wrong", |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [ |
| 224 | + { |
| 225 | + "ename": "RayTaskError(ValueError)", |
| 226 | + "evalue": "\u001b[36mray::execute_node()\u001b[39m (pid=33653, ip=192.168.1.37)\n File \"python/ray/_raylet.pyx\", line 484, in ray._raylet.execute_task\n File \"/Users/rganti/PycharmProjects/ray-graphs/com/ibm/research/ray/graph/Runtime.py\", line 9, in execute_node\n return node.get_transformer().transform(args)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/preprocessing/_data.py\", line 2207, in transform\n reset=False)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/base.py\", line 421, in _validate_data\n X = check_array(X, **check_params)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\", line 63, in inner_f\n return f(*args, **kwargs)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\", line 641, in check_array\n \"if it contains a single sample.\".format(array))\nValueError: Expected 2D array, got 1D array instead:\narray=[0. 0.52658903 0.74127631 0.86974169].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.", |
| 227 | + "output_type": "error", |
| 228 | + "traceback": [ |
| 229 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 230 | + "\u001b[0;31mRayTaskError(ValueError)\u001b[0m Traceback (most recent call last)", |
| 231 | + "\u001b[0;32m<ipython-input-46-4fc04be03d7a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mout_args\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode_d\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 232 | + "\u001b[0;32m~/Library/Python/3.7/lib/python/site-packages/ray/worker.py\u001b[0m in \u001b[0;36mget\u001b[0;34m(object_refs, timeout)\u001b[0m\n\u001b[1;32m 1426\u001b[0m \u001b[0mworker\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcore_worker\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdump_object_store_memory_usage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1427\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mRayTaskError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1428\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_instanceof_cause\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1429\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1430\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 233 | + "\u001b[0;31mRayTaskError(ValueError)\u001b[0m: \u001b[36mray::execute_node()\u001b[39m (pid=33653, ip=192.168.1.37)\n File \"python/ray/_raylet.pyx\", line 484, in ray._raylet.execute_task\n File \"/Users/rganti/PycharmProjects/ray-graphs/com/ibm/research/ray/graph/Runtime.py\", line 9, in execute_node\n return node.get_transformer().transform(args)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/preprocessing/_data.py\", line 2207, in transform\n reset=False)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/base.py\", line 421, in _validate_data\n X = check_array(X, **check_params)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\", line 63, in inner_f\n return f(*args, **kwargs)\n File \"/Users/rganti/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\", line 641, in check_array\n \"if it contains a single sample.\".format(array))\nValueError: Expected 2D array, got 1D array instead:\narray=[0. 0.52658903 0.74127631 0.86974169].\nReshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample." |
| 234 | + ] |
| 235 | + } |
| 236 | + ], |
| 237 | + "source": [ |
| 238 | + "ray.get(out_args[node_d])" |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": 48, |
| 244 | + "id": "decreased-showcase", |
| 245 | + "metadata": {}, |
| 246 | + "outputs": [], |
| 247 | + "source": [ |
| 248 | + "from sklearn.preprocessing import MinMaxScaler\n", |
| 249 | + "\n", |
| 250 | + "scaler = MinMaxScaler()" |
| 251 | + ] |
| 252 | + }, |
| 253 | + { |
| 254 | + "cell_type": "code", |
| 255 | + "execution_count": 49, |
| 256 | + "id": "objective-province", |
| 257 | + "metadata": {}, |
| 258 | + "outputs": [ |
| 259 | + { |
| 260 | + "ename": "NotFittedError", |
| 261 | + "evalue": "This MinMaxScaler instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.", |
| 262 | + "output_type": "error", |
| 263 | + "traceback": [ |
| 264 | + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
| 265 | + "\u001b[0;31mNotFittedError\u001b[0m Traceback (most recent call last)", |
| 266 | + "\u001b[0;32m<ipython-input-49-b8a40112f386>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mscaler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 267 | + "\u001b[0;32m~/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/preprocessing/_data.py\u001b[0m in \u001b[0;36mtransform\u001b[0;34m(self, X)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0mTransformed\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 431\u001b[0m \"\"\"\n\u001b[0;32m--> 432\u001b[0;31m \u001b[0mcheck_is_fitted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 433\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 434\u001b[0m X = self._validate_data(X, copy=self.copy, dtype=FLOAT_DTYPES,\n", |
| 268 | + "\u001b[0;32m~/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36minner_f\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0mextra_args\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mall_args\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 62\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mextra_args\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 63\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 64\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 65\u001b[0m \u001b[0;31m# extra_args > 0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
| 269 | + "\u001b[0;32m~/PycharmProjects/ray-graphs/venv37/lib/python3.7/site-packages/sklearn/utils/validation.py\u001b[0m in \u001b[0;36mcheck_is_fitted\u001b[0;34m(estimator, attributes, msg, all_or_any)\u001b[0m\n\u001b[1;32m 1039\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1040\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mattrs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1041\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mNotFittedError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m'name'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mestimator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__name__\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1042\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1043\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", |
| 270 | + "\u001b[0;31mNotFittedError\u001b[0m: This MinMaxScaler instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator." |
| 271 | + ] |
| 272 | + } |
| 273 | + ], |
| 274 | + "source": [ |
| 275 | + "scaler.transform(X)" |
| 276 | + ] |
| 277 | + }, |
| 278 | + { |
| 279 | + "cell_type": "code", |
| 280 | + "execution_count": null, |
| 281 | + "id": "beautiful-extension", |
| 282 | + "metadata": {}, |
| 283 | + "outputs": [], |
| 284 | + "source": [] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": null, |
| 289 | + "id": "abandoned-andorra", |
| 290 | + "metadata": {}, |
| 291 | + "outputs": [], |
| 292 | + "source": [ |
| 293 | + "if not l:\n", |
| 294 | + " print('True')" |
| 295 | + ] |
| 296 | + }, |
| 297 | + { |
| 298 | + "cell_type": "code", |
| 299 | + "execution_count": null, |
| 300 | + "id": "subject-pakistan", |
| 301 | + "metadata": {}, |
| 302 | + "outputs": [], |
| 303 | + "source": [] |
| 304 | + }, |
| 305 | + { |
| 306 | + "cell_type": "code", |
| 307 | + "execution_count": null, |
| 308 | + "id": "chemical-makeup", |
| 309 | + "metadata": {}, |
| 310 | + "outputs": [], |
| 311 | + "source": [] |
| 312 | + }, |
| 313 | + { |
| 314 | + "cell_type": "code", |
| 315 | + "execution_count": null, |
| 316 | + "id": "north-laundry", |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [], |
| 319 | + "source": [] |
| 320 | + } |
| 321 | + ], |
| 322 | + "metadata": { |
| 323 | + "kernelspec": { |
| 324 | + "display_name": "Python 3", |
| 325 | + "language": "python", |
| 326 | + "name": "python3" |
| 327 | + }, |
| 328 | + "language_info": { |
| 329 | + "codemirror_mode": { |
| 330 | + "name": "ipython", |
| 331 | + "version": 3 |
| 332 | + }, |
| 333 | + "file_extension": ".py", |
| 334 | + "mimetype": "text/x-python", |
| 335 | + "name": "python", |
| 336 | + "nbconvert_exporter": "python", |
| 337 | + "pygments_lexer": "ipython3", |
| 338 | + "version": "3.7.9" |
| 339 | + } |
| 340 | + }, |
| 341 | + "nbformat": 4, |
| 342 | + "nbformat_minor": 5 |
| 343 | +} |
0 commit comments