Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 7 additions & 2 deletions pymc3/sampling.py
Original file line number Diff line number Diff line change
Expand Up @@ -318,7 +318,7 @@ def _soft_update(a, b):
a.update({k: v for k, v in b.items() if k not in a})


def sample_ppc(trace, samples=None, model=None, vars=None, size=None, random_seed=None):
def sample_ppc(trace, samples=None, model=None, vars=None, size=None, random_seed=None, progressbar=True):
"""Generate posterior predictive samples from a model given a trace.

Parameters
Expand Down Expand Up @@ -353,8 +353,13 @@ def sample_ppc(trace, samples=None, model=None, vars=None, size=None, random_see

seed(random_seed)

if progressbar:
indices = tqdm(randint(0, len(trace), samples), total=samples)
else:
indices = randint(0, len(trace), samples)

ppc = defaultdict(list)
for idx in randint(0, len(trace), samples):
for idx in indices:
param = trace[idx]
for var in vars:
ppc[var.name].append(var.distribution.random(point=param,
Expand Down
8 changes: 6 additions & 2 deletions pymc3/variational/advi.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,8 @@
import pymc3 as pm
from pymc3.backends.base import MultiTrace

from tqdm import trange

__all__ = ['advi', 'sample_vp']

ADVIFit = namedtuple('ADVIFit', 'means, stds, elbo_vals')
Expand Down Expand Up @@ -272,7 +274,7 @@ def optimizer(loss, param):

def sample_vp(
vparams, draws=1000, model=None, local_RVs=None, random_seed=None,
hide_transformed=True):
hide_transformed=True, progressbar=True):
"""Draw samples from variational posterior.

Parameters
Expand Down Expand Up @@ -344,7 +346,9 @@ def sample_vp(
trace = pm.sampling.NDArray(model=model, vars=vars_sampled)
trace.setup(draws=draws, chain=0)

for i in range(draws):
range_ = trange(draws) if progressbar else range(draws)

for i in range_:
# 'point' is like {'var1': np.array(0.1), 'var2': np.array(0.2), ...}
point = {varname: value for varname, value in zip(varnames, f())}
trace.record(point)
Expand Down