Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
6e7858a
Removed disaster_model.ipynb
fonnesbeck Oct 19, 2016
854a6ab
Replaced multinomial probability bounds test in logp (#1462)
fonnesbeck Oct 20, 2016
ad59d5a
Updated some broken notebooks
fonnesbeck Oct 21, 2016
362c8ee
More robust transformations and scaling adjustments (#1461)
fonnesbeck Oct 22, 2016
968f341
Added warnings for non-positive support in positive parameters (#1472)
fonnesbeck Oct 23, 2016
1e845bf
Generalize find_MAP to accept more scipy.optimize functions
fonnesbeck Oct 23, 2016
2a659d8
Merge pull request #1474 from pymc-devs/generalize_fmin
ColCarroll Oct 23, 2016
39637ed
Ignore SQLite file generated by tests
AustinRochford Oct 23, 2016
540da5f
Merge pull request #1475 from AustinRochford/git-ignore-test-artifacts
AustinRochford Oct 23, 2016
b7fc184
Add failing test for multinomial with many observations
AustinRochford Oct 25, 2016
1a21db4
Fix Multinomial logp when there is more than one observation
AustinRochford Oct 25, 2016
954b01d
Merge pull request #1478 from AustinRochford/bugfix-multinomial-vector
fonnesbeck Oct 25, 2016
f52d411
Changed check for non-positive support to check for negative support
fonnesbeck Oct 25, 2016
77d8715
Fixed typo
fonnesbeck Oct 25, 2016
09fba92
Fixed typos
fonnesbeck Oct 26, 2016
5e2e466
Fix parallel sampling (#1481)
ColCarroll Oct 26, 2016
96093c6
Merge pull request #1482 from pymc-devs/assert_negative
fonnesbeck Oct 26, 2016
f985816
Removed disaster_model.ipynb
fonnesbeck Oct 19, 2016
424619f
Updated some broken notebooks
fonnesbeck Oct 21, 2016
7eca16b
Minor cleanup of two notebooks
fonnesbeck Oct 28, 2016
4181486
Merge branch 'working_notebooks' of github.com:pymc-devs/pymc3 into w…
fonnesbeck Oct 28, 2016
0e57089
Updating WIP for two notebooks
fonnesbeck Oct 28, 2016
211731b
Minor cleanup of GMM
fonnesbeck Oct 28, 2016
a861043
Removed ADVI call
fonnesbeck Oct 28, 2016
6422013
Attempts to tweak NUTS_scaling notebook to make NUTS work; still broken
fonnesbeck Oct 28, 2016
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -18,3 +18,6 @@ _build

# Merge tool
*.orig

# Test artifacts
mcmc.sqlite
16 changes: 7 additions & 9 deletions docs/source/notebooks/BEST.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -470,15 +470,6 @@
"2.\tJohnson D. The insignificance of statistical significance testing. Journal of Wildlife Management. 1999;63(3):763-772.\n",
"3.\tKruschke JK. Bayesian estimation supersedes the t test. J Exp Psychol Gen. 2013;142(2):573-603. doi:10.1037/a0029146."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
Expand All @@ -499,6 +490,13 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"latex_envs": {
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 0
}
},
"nbformat": 4,
Expand Down
224 changes: 71 additions & 153 deletions docs/source/notebooks/NUTS_scaling_using_ADVI.ipynb

Large diffs are not rendered by default.

126 changes: 73 additions & 53 deletions docs/source/notebooks/advi.ipynb

Large diffs are not rendered by default.

494 changes: 403 additions & 91 deletions docs/source/notebooks/cox_model.ipynb

Large diffs are not rendered by default.

121 changes: 0 additions & 121 deletions docs/source/notebooks/disaster_model.ipynb

This file was deleted.

72 changes: 27 additions & 45 deletions docs/source/notebooks/discrete_find_MAP.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@
},
"outputs": [],
"source": [
"import pymc3 as mc"
"import pymc3 as pm"
]
},
{
Expand Down Expand Up @@ -53,10 +53,10 @@
"n = 20\n",
"yes = 15\n",
"\n",
"with mc.Model() as model:\n",
" p = mc.Beta('p', alpha, beta)\n",
" surv_sim = mc.Binomial('surv_sim', n=n, p=p)\n",
" surv = mc.Binomial('surv', n=n, p=p, observed=yes)"
"with pm.Model() as model:\n",
" p = pm.Beta('p', alpha, beta)\n",
" surv_sim = pm.Binomial('surv_sim', n=n, p=p)\n",
" surv = pm.Binomial('surv', n=n, p=p, observed=yes)"
]
},
{
Expand All @@ -72,18 +72,10 @@
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'surv_sim': array(10), 'p_logodds_': array(0.42285684671251805)}\n"
]
}
],
"outputs": [],
"source": [
"with model:\n",
" print(mc.find_MAP())"
" pm.find_MAP()"
]
},
{
Expand All @@ -99,18 +91,10 @@
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'surv_sim': array(14), 'p_logodds_': array(0.7884573537909452)}\n"
]
}
],
"outputs": [],
"source": [
"with model:\n",
" print(mc.find_MAP(vars=model.vars, disp=True))"
" pm.find_MAP(vars=model.vars, disp=True)"
]
},
{
Expand All @@ -134,9 +118,9 @@
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-299cdf766633>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m'p'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'surv_sim'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmap_est\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_MAP\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvars\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstarting\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moptimize\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfmin_bfgs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n\u001b[1;32m 6\u001b[0m \u001b[0mmap_est\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'surv_sim'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/home/wiecki/working/projects/pymc/pymc3/tuning/starting.py\u001b[0m in \u001b[0;36mfind_MAP\u001b[0;34m(start, vars, fmin, return_raw, model, *args, **kwargs)\u001b[0m\n\u001b[1;32m 82\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'fprime'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgetargspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfmin\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 83\u001b[0m r = fmin(logp_o, bij.map(\n\u001b[0;32m---> 84\u001b[0;31m start), fprime=grad_logp_o, *args, **kwargs)\n\u001b[0m\u001b[1;32m 85\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogp_o\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbij\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/home/wiecki/working/projects/pymc/pymc3/blocking.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, dpt)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mapt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mempty\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mordering\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mslc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mordering\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvmap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mapt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslc\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdpt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mapt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m<ipython-input-5-1a981a0bba6e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0ms\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m{\u001b[0m\u001b[0;34m'p'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m0.5\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'surv_sim'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m}\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mmap_est\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfind_MAP\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ms\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvars\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n\u001b[1;32m 6\u001b[0m \u001b[0mmap_est\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'surv_sim'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/fonnescj/Repositories/pymc3/pymc3/tuning/starting.py\u001b[0m in \u001b[0;36mfind_MAP\u001b[0;34m(start, vars, fmin, return_raw, model, *args, **kwargs)\u001b[0m\n\u001b[1;32m 86\u001b[0m \u001b[0;31m# Check to see if minimization function uses a starting value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 87\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m'x0'\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgetargspec\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfmin\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 88\u001b[0;31m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogp_o\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mbij\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 89\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlogp_o\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/Users/fonnescj/Repositories/pymc3/pymc3/blocking.py\u001b[0m in \u001b[0;36mmap\u001b[0;34m(self, dpt)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mapt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mempty\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mordering\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mslc\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mordering\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvmap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 52\u001b[0;31m \u001b[0mapt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mslc\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdpt\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mapt\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mKeyError\u001b[0m: 'p_logodds_'"
]
}
Expand All @@ -145,7 +129,7 @@
"with model:\n",
" for i in range(n+1):\n",
" s = {'p':0.5, 'surv_sim':i}\n",
" map_est = mc.find_MAP(start=s, vars=model.vars, fmin=mc.starting.optimize.fmin_bfgs)\n",
" map_est = pm.find_MAP(start=s, vars=model.vars)\n",
" print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n",
" map_est['surv_sim'],\n",
" s['p'],\n",
Expand All @@ -171,7 +155,7 @@
"with model:\n",
" for i in range(n+1):\n",
" s = {'p':0.5, 'surv_sim':i}\n",
" map_est = mc.find_MAP(start=s, vars=model.vars)\n",
" map_est = pm.find_MAP(start=s, vars=model.vars)\n",
" print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n",
" map_est['surv_sim'],\n",
" s['p'],\n",
Expand All @@ -195,14 +179,14 @@
"outputs": [],
"source": [
"def bh(*args,**kwargs):\n",
" result = mc.starting.optimize.basinhopping(*args, **kwargs)\n",
" result = pm.starting.optimize.basinhopping(*args, **kwargs)\n",
" # A `Result` object is returned, the argmin value can be in `x`\n",
" return result['x']\n",
"\n",
"with model:\n",
" for i in range(n+1):\n",
" s = {'p':0.5, 'surv_sim':i}\n",
" map_est = mc.find_MAP(start=s, vars=model.vars, fmin=bh)\n",
" map_est = pm.find_MAP(start=s, vars=model.vars, fmin=bh)\n",
" print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n",
" floor(map_est['surv_sim']),\n",
" s['p'],\n",
Expand All @@ -228,7 +212,7 @@
"with model:\n",
" for i in range(n+1):\n",
" s = {'p':0.5, 'surv_sim':i}\n",
" map_est = mc.find_MAP(start=s, vars=model.vars, fmin=bh, minimizer_kwargs={\"method\": /\"Powell\"})\n",
" map_est = pm.find_MAP(start=s, vars=model.vars, fmin=bh, minimizer_kwargs={\"method\": /\"Powell\"})\n",
" print('surv_sim: %i->%i, p: %f->%f, LogP:%f'%(s['surv_sim'],\n",
" map_est['surv_sim'],\n",
" s['p'],\n",
Expand All @@ -252,8 +236,8 @@
"outputs": [],
"source": [
"with model:\n",
" step1 = mc.step_methods.HamiltonianMC(vars=[p])\n",
" step2 = mc.step_methods.Metropolis(vars=[surv_sim])"
" step1 = pm.step_methods.HamiltonianMC(vars=[p])\n",
" step2 = pm.step_methods.Metropolis(vars=[surv_sim])"
]
},
{
Expand All @@ -276,17 +260,8 @@
},
"outputs": [],
"source": [
"mc.traceplot(trace);"
"pm.traceplot(trace);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
Expand All @@ -307,6 +282,13 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
},
"latex_envs": {
"bibliofile": "biblio.bib",
"cite_by": "apalike",
"current_citInitial": 1,
"eqLabelWithNumbers": true,
"eqNumInitial": 0
}
},
"nbformat": 4,
Expand Down
Loading