Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 98 additions & 0 deletions examples/models/voxtral/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,98 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

#
# Simple CMake build system for voxtral runner.
#
cmake_minimum_required(VERSION 3.24)
project(voxtral)

set(EXECUTORCH_ROOT ${CMAKE_CURRENT_SOURCE_DIR}/../../..)

include(${EXECUTORCH_ROOT}/tools/cmake/Utils.cmake)

if(CMAKE_TOOLCHAIN_FILE MATCHES ".*(iOS|ios\.toolchain)\.cmake$")
set(CMAKE_TOOLCHAIN_IOS ON)
else()
set(CMAKE_TOOLCHAIN_IOS OFF)
endif()

# Let files say "include <executorch/path/to/header.h>"
set(_common_include_directories ${EXECUTORCH_ROOT}/..)

# Need this for gflags for some reason
set(gflags_DIR ${CMAKE_CURRENT_BINARY_DIR}/../../../third-party/gflags)
find_package(gflags REQUIRED)

# Find `executorch` libraries, same as for gflags
list(APPEND CMAKE_FIND_ROOT_PATH ${CMAKE_CURRENT_BINARY_DIR}/../../..)
find_package(executorch CONFIG REQUIRED FIND_ROOT_PATH_BOTH)
executorch_target_link_options_shared_lib(executorch)

set(link_libraries executorch gflags)
set(_srcs multimodal.cpp)

list(
APPEND
link_libraries
optimized_native_cpu_ops_lib
quantized_ops_lib
custom_ops
cpublas
eigen_blas
)
executorch_target_link_options_shared_lib(optimized_native_cpu_ops_lib)
executorch_target_link_options_shared_lib(quantized_ops_lib)
executorch_target_link_options_shared_lib(custom_ops)

# XNNPACK
if(TARGET xnnpack_backend)
set(xnnpack_backend_libs xnnpack_backend XNNPACK xnnpack-microkernels-prod)
if(TARGET kleidiai)
list(APPEND xnnpack_backend_libs kleidiai)
endif()
list(APPEND link_libraries ${xnnpack_backend_libs})
executorch_target_link_options_shared_lib(xnnpack_backend)
endif()

# Add LLM runner and extension module
if(NOT TARGET extension_llm_runner)
message(
FATAL_ERROR
"ExecuTorch must be installed with EXECUTORCH_BUILD_EXTENSION_LLM_RUNNER enabled."
)
endif()

# Needed for cpuinfo where it uses android specific log lib
if(ANDROID)
list(APPEND link_libraries log)
endif()

# Add the required ExecuTorch extensions for multimodal LLM runner
list(
APPEND
link_libraries
extension_llm_runner
extension_module
extension_data_loader
extension_tensor
extension_flat_tensor
)

# Add tokenizers
list(APPEND link_libraries tokenizers::tokenizers)

add_executable(voxtral_runner ${_srcs})
if(NOT CMAKE_BUILD_TYPE STREQUAL "Debug")
target_link_options_gc_sections(voxtral_runner)
if(NOT APPLE)
target_link_options(voxtral_runner PRIVATE "LINKER:-s")
endif()
endif()

target_include_directories(voxtral_runner PUBLIC ${_common_include_directories})
target_link_libraries(voxtral_runner PUBLIC ${link_libraries})
target_compile_options(voxtral_runner PUBLIC ${_common_compile_options})
212 changes: 212 additions & 0 deletions examples/models/voxtral/multimodal.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,212 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/

#include <cmath>
#include <cstring>
#include <fstream>

#include <gflags/gflags.h>

#include <executorch/extension/llm/runner/audio.h>
#include <executorch/extension/llm/runner/image.h>
#include <executorch/extension/llm/runner/llm_runner_helper.h>
#include <executorch/extension/llm/runner/multimodal_input.h>
#include <executorch/extension/llm/runner/multimodal_runner.h>
#include <executorch/runtime/core/error.h>
#include <executorch/runtime/platform/log.h>

#if defined(ET_USE_THREADPOOL)
#include <executorch/extension/threadpool/cpuinfo_utils.h>
#include <executorch/extension/threadpool/threadpool.h>
#endif

DEFINE_string(
model_path,
"multimodal.pte",
"Model serialized in flatbuffer format.");

DEFINE_string(tokenizer_path, "tekken.json", "Tokenizer stuff.");

DEFINE_string(prompt, "What is happening in this audio?", "Text prompt.");

DEFINE_string(audio_path, "", "Path to input audio file.");

DEFINE_double(
temperature,
0.8f,
"Temperature; Default is 0.8f. 0 = greedy argmax sampling (deterministic). Lower temperature = more deterministic");

DEFINE_int32(
cpu_threads,
-1,
"Number of CPU threads for inference. Defaults to -1, which implies we'll use a heuristic to derive the # of performant cores for a specific device.");

DEFINE_bool(warmup, false, "Whether to run a warmup run.");

namespace {

using ::executorch::extension::llm::Image;
using ::executorch::extension::llm::make_image_input;
using ::executorch::extension::llm::make_text_input;
using ::executorch::extension::llm::MultimodalInput;

bool ends_with(const std::string& str, const std::string& suffix) {
return str.size() >= suffix.size() &&
str.compare(str.size() - suffix.size(), suffix.size(), suffix) == 0;
}

/**
* @brief Loads preprocessed audio data from a binary file
*
* Reads mel spectrogram features that have been pre-computed and saved as a
* binary file. The audio data is expected to be stored as float values in
* binary format, typically saved using:
* with open("tensor.bin", "wb") as f:
* f.write(t.numpy().tobytes())
*
* @param audio_path Path to the binary audio file (.bin)
* @return MultimodalInput containing the loaded audio data
*/
MultimodalInput loadPreprocessedAudio(const std::string& audio_path) {
std::ifstream f(audio_path, std::ios::binary | std::ios::ate);
int32_t n_bins = 128;
int32_t n_frames = 3000;
std::size_t n_floats =
f.tellg() / sizeof(float); // Number of floats in the audio file.
f.seekg(0, std::ios::beg);
int32_t batch_size = ceil(
n_floats /
(n_bins * n_frames)); // Batch in increments of n_frames, rounding up.
std::vector<float> audio_data(batch_size * n_bins * n_frames);
f.read(
reinterpret_cast<char*>(audio_data.data()),
audio_data.size() * sizeof(float));
Comment on lines +85 to +88
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

why allocate a vector and then later copy it into audio->data? instead we can f.read directly into audio->data.data()


ET_LOG(Info, "audio_data len = %d", audio_data.size());

auto audio = std::make_unique<::executorch::extension::llm::Audio>();
audio->batch_size = batch_size;
audio->n_bins = n_bins;
audio->n_frames = n_frames;
audio->data.resize(audio_data.size() * sizeof(float));
std::memcpy(
audio->data.data(), audio_data.data(), audio_data.size() * sizeof(float));
return ::executorch::extension::llm::make_audio_input(std::move(*audio));
}

/**
* @brief Processes audio files for multimodal input
*
* Dispatches audio file processing based on file extension:
* - .bin files: Loads preprocessed mel spectrogram features directly
* - .wav/.mp3 files: Currently unsupported, throws runtime_error
*
* This function provides a interface for different audio input formats
* and can be extended to support raw audio processing in the future.
*
* @param audio_path Path to the audio file
* @return MultimodalInput containing the processed audio data
* @throws std::runtime_error if file format is unsupported or processing fails
*/
MultimodalInput processAudioFile(const std::string& audio_path) {
if (ends_with(audio_path, ".bin")) {
// Current behavior - load preprocessed audio stored as a binary file.
return loadPreprocessedAudio(audio_path);
} else if (ends_with(audio_path, ".wav") || ends_with(audio_path, ".mp3")) {
// New: Process raw audio files - unsupported for now
ET_LOG(Error, "Raw audio file processing (.wav/.mp3) is not yet supported");
throw std::runtime_error("Raw audio file processing not supported");
} else {
ET_LOG(Error, "Unsupported audio file format: %s", audio_path.c_str());
throw std::runtime_error("Unsupported audio file format");
}
}

} // namespace

int32_t main(int32_t argc, char** argv) {
gflags::ParseCommandLineFlags(&argc, &argv, true);

const char* model_path = FLAGS_model_path.c_str();

const char* tokenizer_path = FLAGS_tokenizer_path.c_str();
const char* prompt = FLAGS_prompt.c_str();
const char* audio_path = FLAGS_audio_path.c_str();
float temperature = FLAGS_temperature;
int32_t cpu_threads = FLAGS_cpu_threads;
bool warmup = FLAGS_warmup;

#if defined(ET_USE_THREADPOOL)
uint32_t num_performant_cores = cpu_threads == -1
? ::executorch::extension::cpuinfo::get_num_performant_cores()
: static_cast<uint32_t>(cpu_threads);
ET_LOG(
Info, "Resetting threadpool with num threads = %d", num_performant_cores);
if (num_performant_cores > 0) {
::executorch::extension::threadpool::get_threadpool()
->_unsafe_reset_threadpool(num_performant_cores);
}
#endif

// Load tokenizer
std::unique_ptr<::tokenizers::Tokenizer> tokenizer =
::executorch::extension::llm::load_tokenizer(tokenizer_path);
if (tokenizer == nullptr) {
ET_LOG(Error, "Failed to load tokenizer from: %s", tokenizer_path);
return 1;
}

// Create multimodal runner
std::unique_ptr<::executorch::extension::llm::MultimodalRunner> runner =
::executorch::extension::llm::create_multimodal_runner(
model_path, std::move(tokenizer));
if (runner == nullptr) {
ET_LOG(Error, "Failed to create multimodal runner");
return 1;
}

// Load runner
auto load_error = runner->load();
if (load_error != ::executorch::runtime::Error::Ok) {
ET_LOG(Error, "Failed to load multimodal runner");
return 1;
}

// Prepare inputs
std::vector<MultimodalInput> inputs = {
make_text_input("<s>[INST][BEGIN_AUDIO]"),
processAudioFile(audio_path),
make_text_input(std::string(prompt) + "[/INST]"),
};

::executorch::extension::llm::GenerationConfig config;
config.max_new_tokens = 100;
config.temperature = temperature;

// Run warmup if requested
if (warmup) {
ET_LOG(Info, "Running warmup...");
auto warmup_error = runner->generate(inputs, config);
if (warmup_error != ::executorch::runtime::Error::Ok) {
ET_LOG(Error, "Failed to run warmup");
return 1;
}
runner->reset();
}

// Generate
ET_LOG(Info, "Starting generation...");
auto error = runner->generate(inputs, config);
if (error != ::executorch::runtime::Error::Ok) {
ET_LOG(Error, "Failed to generate with multimodal runner");
return 1;
}

printf("\n");
return 0;
}
Loading
Loading