Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 12 additions & 12 deletions test/test_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,21 +104,15 @@ def _check_helper(self, device, dtype, op, variant, check):

samples = op.sample_inputs(device, dtype, requires_grad=True)
for sample in samples:
if sample.output_process_fn_grad is not None:
out_fn = sample.output_process_fn_grad

def variant_out_fn(*args, **kwargs):
return out_fn(variant(*args, **kwargs))
else:
variant_out_fn = variant

def fn(*inputs):
# Pack input back into TensorList since we splat it when passing to gradcheck
if is_iterable_of_tensors(sample.input):
n = len(sample.input)
inputs = (inputs[:n], *inputs[n:])
output = variant_out_fn(*inputs, **sample.kwargs)
return op.output_func(output)
output = op.gradcheck_wrapper(variant, *inputs, **sample.kwargs)
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output

# Gradcheck does not support TensorList so we splat it with the remaining args
gradcheck_args = (sample.input,) if isinstance(sample.input, torch.Tensor) else tuple(sample.input)
Expand Down Expand Up @@ -316,10 +310,16 @@ def test_variant_consistency_jit(self, device, dtype, op):
# Check scripted forward, grad, and grad grad
script_fn = create_script_fn(self, name, func_type)

def out_fn(output):
# Processes the output for autograd
if sample.output_process_fn_grad is not None:
return sample.output_process_fn_grad(output)
return output

check_against_reference(self,
script_fn,
func,
op.output_func,
out_fn,
(sample.input,) + sample.args,
sample.kwargs,
no_grad=not _requires_grad)
Expand All @@ -329,7 +329,7 @@ def test_variant_consistency_jit(self, device, dtype, op):
check_against_reference(self,
traced_fn,
func,
op.output_func,
out_fn,
(sample.input,) + sample.args,
sample.kwargs,
no_grad=not _requires_grad)
Expand Down
Loading