Skip to content

The implementation of paper "Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring".

License

Ra1demmmm/Autoencoder-based-Outlier-Detection

Repository files navigation

MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction

This repo contains source codes for the paper MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction.

Software Requirement

  • Python 3.7
  • numpy 1.19.5
  • pandas 1.3.3
  • scikit-learn 0.22
  • scipy 1.7.1
  • torch 1.9.1

Get started

  • Prepare the dataset.

    • Place the dataset in ./dataset/original/
      For example:

      ├── original/
          └── Optdigits/
              ├── Optdigits_data.txt
              └── Optdigits_label.txt
      

      The dataset name should be consistent everywhere in this project.

    • Open ./data_pre.py
      Edit "data_dir", "target_dir", and "dataset" according to your setting in the previous step.

    • Run python ./data_pre.py

  • Do main experiments.

    • Open ./run_main.sh
      Edit the experimental settings.
      --gpu: Training on which GPU.
      --dataset: Name of the dataset
      --data_dir: Directory of data
      --epochs: Number of training epochs
      --result_dir: Directory to dump results
      --net: Which network to use: AE; PAE
      --alpha: Hyper-paramter alpha for PAE
      --beta: Hyper-paramter beta for PAE
      --inits: How many random initial states for step 2.

    • Run bash ./run_main.sh

Dataset

All datasets used can be found in OutlierNet.

Citation

@article{TAN2025111467,
    title = {MSS-PAE: Saving Autoencoder-based Outlier Detection from Unexpected Reconstruction},
    journal = {Pattern Recognition},
    volume = {163},
    pages = {111467},
    year = {2025},
    issn = {0031-3203},
    doi = {https://doi.org/10.1016/j.patcog.2025.111467},
    url = {https://www.sciencedirect.com/science/article/pii/S003132032500127X}
}

About

The implementation of paper "Improving Autoencoder-based Outlier Detection with Adjustable Probabilistic Reconstruction Error and Mean-shift Outlier Scoring".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published