|
| 1 | +use impl_new_derive::ImplNew; |
| 2 | +use ndarray::{linalg::kron, s, Array1, Array2, Axis}; |
| 3 | +use ndarray_rand::RandomExt; |
| 4 | +use ndrustfft::{ndfft, ndfft_par, FftHandler}; |
| 5 | +use num_complex::{Complex64, ComplexDistribution}; |
| 6 | +use rand_distr::StandardNormal; |
| 7 | + |
| 8 | +#[derive(ImplNew)] |
| 9 | +pub struct FBS { |
| 10 | + pub hurst: f64, |
| 11 | + pub m: usize, |
| 12 | + pub n: usize, |
| 13 | + pub R: f64, |
| 14 | +} |
| 15 | + |
| 16 | +impl FBS { |
| 17 | + pub fn sample(&self) -> Array2<f64> { |
| 18 | + let (m, n, H, R) = (self.m, self.n, self.hurst, self.R); |
| 19 | + let alpha = 2.0 * H; |
| 20 | + |
| 21 | + let tx = Array1::linspace(R / n as f64, R, n); |
| 22 | + let ty = Array1::linspace(R / m as f64, R, m); |
| 23 | + |
| 24 | + let mut cov = Array2::<f64>::zeros((m, n)); |
| 25 | + for i in 0..n { |
| 26 | + for j in 0..m { |
| 27 | + cov[[j, i]] = Self::rho((tx[i], ty[j]), (tx[0], ty[0]), R, alpha).0; |
| 28 | + } |
| 29 | + } |
| 30 | + |
| 31 | + // 3. Construct block circulant matrix |
| 32 | + let big_m = 2 * (m - 1); |
| 33 | + let big_n = 2 * (n - 1); |
| 34 | + let mut blk = Array2::<f64>::zeros((big_m, big_n)); |
| 35 | + // top-left block |
| 36 | + blk.slice_mut(s![..m, ..n]).assign(&cov); |
| 37 | + |
| 38 | + // top-right: flip columns except first |
| 39 | + blk |
| 40 | + .slice_mut(s![..m, n..]) |
| 41 | + .assign(&cov.slice(s![.., 1..n - 1;-1])); |
| 42 | + |
| 43 | + // bottom-left: flip rows except first |
| 44 | + blk |
| 45 | + .slice_mut(s![m.., ..n]) |
| 46 | + .assign(&cov.slice(s![1..m - 1;-1, ..])); |
| 47 | + |
| 48 | + // bottom-right: flip both rows and cols except first |
| 49 | + blk |
| 50 | + .slice_mut(s![m.., n..]) |
| 51 | + .assign(&cov.slice(s![1..m - 1, 1..n - 1]).slice(s![..;-1, ..;-1])); |
| 52 | + |
| 53 | + // 4. Compute eigenvalues via FFT |
| 54 | + let scale = 4.0 * (m - 1) as f64 * (n - 1) as f64; |
| 55 | + let mut fft_handler0 = FftHandler::<f64>::new(big_m); |
| 56 | + let mut fft_handler1 = FftHandler::<f64>::new(big_n); |
| 57 | + |
| 58 | + let blk_c = blk.mapv(Complex64::from); |
| 59 | + let mut fft_tmp = Array2::<Complex64>::zeros((big_m, big_n)); |
| 60 | + ndfft(&blk_c, &mut fft_tmp, &mut fft_handler0, 0); |
| 61 | + let mut fft_freq = Array2::<Complex64>::zeros((big_m, big_n)); |
| 62 | + ndfft(&fft_tmp, &mut fft_freq, &mut fft_handler1, 1); |
| 63 | + |
| 64 | + let lam = fft_freq.mapv(|c| (c.re / scale).max(0.0).sqrt()); |
| 65 | + |
| 66 | + let z = Array2::random( |
| 67 | + (big_m, big_n), |
| 68 | + ComplexDistribution::new(StandardNormal, StandardNormal), |
| 69 | + ); |
| 70 | + |
| 71 | + let mut Z = lam.mapv(Complex64::from) * z; |
| 72 | + let mut inv_tmp = Array2::<Complex64>::zeros((big_m, big_n)); |
| 73 | + ndfft_par(&Z, &mut inv_tmp, &mut fft_handler0, 0); |
| 74 | + ndfft_par(&inv_tmp, &mut Z, &mut fft_handler1, 1); |
| 75 | + |
| 76 | + let mut field = Array2::<f64>::zeros((m, n)); |
| 77 | + for i in 0..m { |
| 78 | + for j in 0..n { |
| 79 | + field[[i, j]] = Z[[i, j]].re; |
| 80 | + } |
| 81 | + } |
| 82 | + |
| 83 | + let (_, _, c2) = Self::rho((0.0, 0.0), (0.0, 0.0), R, alpha); |
| 84 | + |
| 85 | + let shift = field[[0, 0]]; |
| 86 | + field.mapv_inplace(|v| v - shift); |
| 87 | + |
| 88 | + let rand_x = Array1::<f64>::random(n, StandardNormal); |
| 89 | + let rand_y = Array1::<f64>::random(m, StandardNormal); |
| 90 | + |
| 91 | + let ty_rand = &ty * &rand_y; |
| 92 | + let tx_rand = &tx * &rand_x; |
| 93 | + let ty_mat = ty_rand.insert_axis(Axis(1)); // (m, 1) |
| 94 | + let tx_mat = tx_rand.insert_axis(Axis(0)); // (1, n) |
| 95 | + |
| 96 | + let correction = kron(&ty_mat, &tx_mat) * (2.0 * c2).sqrt(); |
| 97 | + field = &field + &correction; |
| 98 | + |
| 99 | + field |
| 100 | + } |
| 101 | + |
| 102 | + fn rho(x: (f64, f64), y: (f64, f64), R: f64, alpha: f64) -> (f64, f64, f64) { |
| 103 | + let (beta, c2, c0) = if alpha <= 1.5 { |
| 104 | + let c2 = alpha / 2.0; |
| 105 | + let c0 = 1.0 - alpha / 2.0; |
| 106 | + (0.0, c2, c0) |
| 107 | + } else { |
| 108 | + let beta = alpha * (2.0 - alpha) / (3.0 * R * (R * R - 1.0)); |
| 109 | + let c2 = (alpha - beta * (R - 1.0).powi(2) * (R + 2.0)) / 2.0; |
| 110 | + let c0 = beta * (R - 1.0).powi(3) + 1.0 - c2; |
| 111 | + (beta, c2, c0) |
| 112 | + }; |
| 113 | + |
| 114 | + let dx = x.0 - y.0; |
| 115 | + let dy = x.1 - y.1; |
| 116 | + let r = (dx * dx + dy * dy).sqrt(); |
| 117 | + let out = if r <= 1.0 { |
| 118 | + c0 - r.powf(alpha) + c2 * r * r |
| 119 | + } else if r <= R { |
| 120 | + beta * (R - r).powi(3) / r |
| 121 | + } else { |
| 122 | + 0.0 |
| 123 | + }; |
| 124 | + (out, c0, c2) |
| 125 | + } |
| 126 | +} |
| 127 | + |
| 128 | +#[cfg(test)] |
| 129 | +mod tests { |
| 130 | + use super::FBS; |
| 131 | + use ndarray::s; |
| 132 | + use plotly::{surface::PlaneContours, Layout, Plot, Surface}; |
| 133 | + |
| 134 | + #[test] |
| 135 | + fn test_fbm_plot_matlab_like() { |
| 136 | + let m = 100; |
| 137 | + let n = 100; |
| 138 | + let hurst = 0.8; |
| 139 | + let R = 2.0; |
| 140 | + |
| 141 | + let half_m = m / 2; |
| 142 | + let half_n = n / 2; |
| 143 | + |
| 144 | + let fbs = FBS::new(hurst, m, n, R); |
| 145 | + let sheet = fbs.sample(); |
| 146 | + |
| 147 | + let x: Vec<f64> = (1..=half_n).map(|i| i as f64 * R / n as f64).collect(); |
| 148 | + let y: Vec<f64> = (1..=half_m).map(|j| j as f64 * R / m as f64).collect(); |
| 149 | + |
| 150 | + let mut masked_half = sheet.slice(s![..half_m, ..half_n]).to_owned(); |
| 151 | + |
| 152 | + for (i, yi) in y.iter().enumerate() { |
| 153 | + for (j, xj) in x.iter().enumerate() { |
| 154 | + if xj.powi(2) + yi.powi(2) > 1.0 { |
| 155 | + masked_half[[i, j]] = f64::NAN; // NaN works as mask |
| 156 | + } |
| 157 | + } |
| 158 | + } |
| 159 | + |
| 160 | + let z: Vec<Vec<f64>> = masked_half.outer_iter().map(|row| row.to_vec()).collect(); |
| 161 | + |
| 162 | + let surface = Surface::new(z) |
| 163 | + .x(x.clone()) |
| 164 | + .y(y.clone()) |
| 165 | + .name(&format!("FBS H={}", hurst)) |
| 166 | + .color_scale(plotly::common::ColorScale::Palette( |
| 167 | + plotly::common::ColorScalePalette::Hot, |
| 168 | + )) |
| 169 | + .show_scale(true) |
| 170 | + .contours(plotly::surface::SurfaceContours::new().z(PlaneContours::new())); |
| 171 | + |
| 172 | + let mut plot = Plot::new(); |
| 173 | + plot.add_trace(surface); |
| 174 | + plot.set_layout( |
| 175 | + Layout::new() |
| 176 | + .width(800) |
| 177 | + .height(800) |
| 178 | + .title("Fractional Gaussian Field") |
| 179 | + .x_axis(plotly::layout::Axis::new().title("X")) |
| 180 | + .y_axis(plotly::layout::Axis::new().title("Y")), |
| 181 | + ); |
| 182 | + plot.show(); |
| 183 | + |
| 184 | + assert_eq!(sheet.shape(), &[m, n]); |
| 185 | + } |
| 186 | +} |
0 commit comments