Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Graph.{[weighted_]adjacency_matrix,kirchhoff_matrix}: Support constructing End(CombinatorialFreeModule) elements #37955

Merged
merged 11 commits into from
May 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
254 changes: 191 additions & 63 deletions src/sage/graphs/generic_graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -1900,6 +1900,72 @@ def to_dictionary(self, edge_labels=False, multiple_edges=False):

return d

def _vertex_indices_and_keys(self, vertices=None, *, sort=None):
mkoeppe marked this conversation as resolved.
Show resolved Hide resolved
r"""
Process a ``vertices`` parameter.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

May be you could add that this is a helper function for methods like adjacency_matrix, kirchhoff_matrix, etc.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Good idea, done in 98323cb

This is a helper function for :meth:`adjacency_matrix`,
:meth:`incidence_matrix`, :meth:`weighted_adjacency_matrix`,
and :meth:`kirchhoff_matrix`.

INPUT:

- ``vertices`` -- list, ``None``, or ``True`` (default: ``None``)

- when a list, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering of ``vertices``,
- when ``None``, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering given by
:meth:`GenericGraph.vertices`
- when ``True``, construct an endomorphism of a free module instead of
a matrix, where the module's basis is indexed by the vertices.

- ``sort`` -- boolean or ``None`` (default); passed to :meth:`vertices`
when ``vertices`` is not a list.

OUTPUT: pair of:

- ``vertex_indices`` -- a dictionary mapping vertices to numerical indices,
- ``keys`` -- either a tuple of basis keys (when using a
:class:`CombinatorialFreeModule`) or ``None`` (when using a
:class:`FreeModule`, :func:`matrix`).

EXAMPLES::

sage: G = graphs.PathGraph(5)
sage: G.relabel(['o....', '.o...', '..o..', '...o.', '....o'])
sage: G._vertex_indices_and_keys(None)
({'....o': 0, '...o.': 1, '..o..': 2, '.o...': 3, 'o....': 4},
None)
sage: G._vertex_indices_and_keys(None, sort=False)
({'....o': 4, '...o.': 3, '..o..': 2, '.o...': 1, 'o....': 0},
None)
sage: G._vertex_indices_and_keys(['..o..', '.o...', '...o.', 'o....', '....o'])
({'....o': 4, '...o.': 2, '..o..': 0, '.o...': 1, 'o....': 3},
None)
sage: G._vertex_indices_and_keys(True)
({'....o': 4, '...o.': 3, '..o..': 2, '.o...': 1, 'o....': 0},
('o....', '.o...', '..o..', '...o.', '....o'))
sage: G._vertex_indices_and_keys(True, sort=True)
({'....o': 0, '...o.': 1, '..o..': 2, '.o...': 3, 'o....': 4},
('....o', '...o.', '..o..', '.o...', 'o....'))
"""
n = self.order()
keys = None
if vertices is True:
vertices = self.vertices(sort=sort if sort is not None else False)
keys = tuple(vertices) # tuple to make it hashable
elif vertices is None:
try:
vertices = self.vertices(sort=sort if sort is not None else True)
except TypeError:
raise TypeError("Vertex labels are not comparable. You must "
"specify an ordering using parameter 'vertices'")
elif (len(vertices) != n or
set(vertices) != set(self.vertex_iterator())):
raise ValueError("parameter 'vertices' must be a permutation of the vertices")
return {v: i for i, v in enumerate(vertices)}, keys

def adjacency_matrix(self, sparse=None, vertices=None, *, base_ring=None, **kwds):
r"""
Return the adjacency matrix of the (di)graph.
Expand All @@ -1911,10 +1977,16 @@ def adjacency_matrix(self, sparse=None, vertices=None, *, base_ring=None, **kwds
- ``sparse`` -- boolean (default: ``None``); whether to represent with a
sparse matrix

- ``vertices`` -- list (default: ``None``); the ordering of
the vertices defining how they should appear in the
matrix. By default, the ordering given by
:meth:`GenericGraph.vertices` with ``sort=True`` is used.
- ``vertices`` -- list, ``None``, or ``True`` (default: ``None``);

- when a list, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering of ``vertices``,
- when ``None``, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering given by
:meth:`GenericGraph.vertices` with ``sort=True``.
- when ``True``, construct an endomorphism of a free module instead of
a matrix, where the module's basis is indexed by the vertices.

If the vertices are not comparable, the keyword ``vertices`` must be
used to specify an ordering, or a :class:`TypeError` exception will
be raised.
Expand Down Expand Up @@ -2025,27 +2097,45 @@ def adjacency_matrix(self, sparse=None, vertices=None, *, base_ring=None, **kwds
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).

Creating a module endomorphism::

sage: # needs sage.modules
sage: D12 = posets.DivisorLattice(12).hasse_diagram()
sage: phi = D12.adjacency_matrix(vertices=True); phi
Generic endomorphism of
Free module generated by {1, 2, 3, 4, 6, 12} over Integer Ring
sage: print(phi._unicode_art_matrix())
1 2 3 4 6 12
1⎛ 0 1 1 0 0 0⎞
2⎜ 0 0 0 1 1 0⎟
3⎜ 0 0 0 0 1 0⎟
4⎜ 0 0 0 0 0 1⎟
6⎜ 0 0 0 0 0 1⎟
12⎝ 0 0 0 0 0 0⎠

TESTS::

sage: graphs.CubeGraph(8).adjacency_matrix().parent() # needs sage.modules
sage: # needs sage.modules
sage: graphs.CubeGraph(8).adjacency_matrix().parent()
Full MatrixSpace of 256 by 256 dense matrices over Integer Ring
sage: graphs.CubeGraph(9).adjacency_matrix().parent() # needs sage.modules
sage: graphs.CubeGraph(9).adjacency_matrix().parent()
Full MatrixSpace of 512 by 512 sparse matrices over Integer Ring
sage: Graph([(i, i+1) for i in range(500)] + [(0,1),], # needs sage.modules
sage: Graph([(i, i+1) for i in range(500)] + [(0,1),],
....: multiedges=True).adjacency_matrix().parent()
Full MatrixSpace of 501 by 501 dense matrices over Integer Ring
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[0,0,0,0,0]) # needs sage.modules
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[0,0,0,0,0])
Traceback (most recent call last):
...
ValueError: parameter vertices must be a permutation of the vertices
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[1,2,3]) # needs sage.modules
ValueError: parameter 'vertices' must be a permutation of the vertices
sage: graphs.PathGraph(5).adjacency_matrix(vertices=[1,2,3])
Traceback (most recent call last):
...
ValueError: parameter vertices must be a permutation of the vertices
ValueError: parameter 'vertices' must be a permutation of the vertices

sage: Graph ([[0, 42, 'John'], [(42, 'John')]]).adjacency_matrix()
Traceback (most recent call last):
...
TypeError: Vertex labels are not comparable. You must specify an ordering using parameter ``vertices``
TypeError: Vertex labels are not comparable. You must specify an ordering using parameter 'vertices'
sage: Graph ([[0, 42, 'John'], [(42, 'John')]]).adjacency_matrix(vertices=['John', 42, 0])
[0 1 0]
[1 0 0]
Expand All @@ -2056,25 +2146,17 @@ def adjacency_matrix(self, sparse=None, vertices=None, *, base_ring=None, **kwds
sparse = True
if self.has_multiple_edges() or n <= 256 or self.density() > 0.05:
sparse = False
vertex_indices, keys = self._vertex_indices_and_keys(vertices)
if keys is not None:
kwds = copy(kwds)
kwds['row_keys'] = kwds['column_keys'] = keys

if vertices is None:
try:
vertices = self.vertices(sort=True)
except TypeError:
raise TypeError("Vertex labels are not comparable. You must "
"specify an ordering using parameter "
"``vertices``")
elif (len(vertices) != n or
set(vertices) != set(self.vertex_iterator())):
raise ValueError("parameter vertices must be a permutation of the vertices")

new_indices = {v: i for i, v in enumerate(vertices)}
D = {}
directed = self._directed
multiple_edges = self.allows_multiple_edges()
for u, v, l in self.edge_iterator():
i = new_indices[u]
j = new_indices[v]
i = vertex_indices[u]
j = vertex_indices[v]
if multiple_edges and (i, j) in D:
D[i, j] += 1
if not directed and i != j:
Expand Down Expand Up @@ -2298,7 +2380,7 @@ def incidence_matrix(self, oriented=None, sparse=True, vertices=None, edges=None
sage: P5.incidence_matrix(vertices=[1] * P5.order()) # needs sage.modules
Traceback (most recent call last):
...
ValueError: parameter vertices must be a permutation of the vertices
ValueError: parameter 'vertices' must be a permutation of the vertices
sage: P5.incidence_matrix(edges=[(0, 1)] * P5.size()) # needs sage.modules
Traceback (most recent call last):
...
Expand All @@ -2313,18 +2395,9 @@ def incidence_matrix(self, oriented=None, sparse=True, vertices=None, edges=None
if oriented is None:
oriented = self.is_directed()

row_keys = None
if vertices is True:
vertices = self.vertices(sort=False)
row_keys = tuple(vertices) # because a list is not hashable
elif vertices is None:
vertices = self.vertices(sort=False)
elif (len(vertices) != self.num_verts() or
set(vertices) != set(self.vertex_iterator())):
raise ValueError("parameter vertices must be a permutation of the vertices")
vertex_indices, row_keys = self._vertex_indices_and_keys(vertices, sort=False)

column_keys = None
verts = {v: i for i, v in enumerate(vertices)}
use_edge_labels = kwds.pop('use_edge_labels', False)
if edges is True:
edges = self.edges(labels=use_edge_labels)
Expand All @@ -2336,13 +2409,13 @@ def incidence_matrix(self, oriented=None, sparse=True, vertices=None, edges=None
else:
# We check that we have the same set of unlabeled edges
if oriented:
i_edges = [(verts[e[0]], verts[e[1]]) for e in edges]
s_edges = [(verts[u], verts[v]) for u, v in self.edge_iterator(labels=False)]
i_edges = [(vertex_indices[e[0]], vertex_indices[e[1]]) for e in edges]
s_edges = [(vertex_indices[u], vertex_indices[v]) for u, v in self.edge_iterator(labels=False)]
else:
def reorder(u, v):
return (u, v) if u <= v else (v, u)
i_edges = [reorder(verts[e[0]], verts[e[1]]) for e in edges]
s_edges = [reorder(verts[u], verts[v]) for u, v in self.edge_iterator(labels=False)]
i_edges = [reorder(vertex_indices[e[0]], vertex_indices[e[1]]) for e in edges]
s_edges = [reorder(vertex_indices[u], vertex_indices[v]) for u, v in self.edge_iterator(labels=False)]
if sorted(i_edges) != sorted(s_edges):
raise ValueError("parameter edges must be a permutation of the edges")

Expand All @@ -2355,12 +2428,12 @@ def reorder(u, v):
if oriented:
for i, e in enumerate(edges):
if e[0] != e[1]:
m[verts[e[0]], i] = -1
m[verts[e[1]], i] = +1
m[vertex_indices[e[0]], i] = -1
m[vertex_indices[e[1]], i] = +1
else:
for i, e in enumerate(edges):
m[verts[e[0]], i] += 1
m[verts[e[1]], i] += 1
m[vertex_indices[e[0]], i] += 1
m[vertex_indices[e[1]], i] += 1

if row_keys is not None or column_keys is not None:
m.set_immutable()
Expand Down Expand Up @@ -2524,10 +2597,19 @@ def weighted_adjacency_matrix(self, sparse=True, vertices=None,
- ``sparse`` -- boolean (default: ``True``); whether to use a sparse or
a dense matrix

- ``vertices`` -- list (default: ``None``); when specified, each vertex
is represented by its position in the list ``vertices``, otherwise
each vertex is represented by its position in the list returned by
method :meth:`vertices`
- ``vertices`` -- list, ``None``, or ``True`` (default: ``None``);

- when a list, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering of ``vertices``,
- when ``None``, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering given by
:meth:`GenericGraph.vertices` with ``sort=True``.
- when ``True``, construct an endomorphism of a free module instead of
a matrix, where the module's basis is indexed by the vertices.

If the vertices are not comparable, the keyword ``vertices`` must be
used to specify an ordering, or a :class:`TypeError` exception will
be raised.

- ``default_weight`` -- (default: ``None``); specifies the weight to
replace any ``None`` edge label. When not specified an error is raised
Expand Down Expand Up @@ -2579,6 +2661,21 @@ def weighted_adjacency_matrix(self, sparse=True, vertices=None,
ValueError: matrix is immutable; please change a copy instead
(i.e., use copy(M) to change a copy of M).

Creating a module morphism::

sage: # needs sage.modules
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([('A', 'B', 1), ('B', 'C', 2), ('A', 'C', 3), ('A', 'D', 4)])
sage: phi = G.weighted_adjacency_matrix(vertices=True); phi
Generic endomorphism of
Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring
sage: print(phi._unicode_art_matrix())
A B C D
A⎛0 1 3 4⎞
B⎜1 0 2 0⎟
C⎜3 2 0 0⎟
D⎝4 0 0 0⎠

TESTS:

The following doctest verifies that :issue:`4888` is fixed::
Expand Down Expand Up @@ -2609,11 +2706,10 @@ def weighted_adjacency_matrix(self, sparse=True, vertices=None,
if self.has_multiple_edges():
raise NotImplementedError("don't know how to represent weights for a multigraph")

if vertices is None:
vertices = self.vertices(sort=True)
elif (len(vertices) != self.num_verts() or
set(vertices) != set(self.vertex_iterator())):
raise ValueError("parameter vertices must be a permutation of the vertices")
vertex_indices, row_column_keys = self._vertex_indices_and_keys(vertices)
if row_column_keys is not None:
kwds = copy(kwds)
kwds['row_keys'] = kwds['column_keys'] = row_column_keys

# Method for checking edge weights and setting default weight
if default_weight is None:
Expand All @@ -2628,18 +2724,16 @@ def func(u, v, label):
return default_weight
return label

new_indices = {v: i for i,v in enumerate(vertices)}

D = {}
if self._directed:
for u, v, label in self.edge_iterator():
i = new_indices[u]
j = new_indices[v]
i = vertex_indices[u]
j = vertex_indices[v]
D[i, j] = func(u, v, label)
else:
for u, v, label in self.edge_iterator():
i = new_indices[u]
j = new_indices[v]
i = vertex_indices[u]
j = vertex_indices[v]
label = func(u, v, label)
D[i, j] = label
D[j, i] = label
Expand Down Expand Up @@ -2707,6 +2801,20 @@ def kirchhoff_matrix(self, weighted=None, indegree=True, normalized=False, signl

- Else, `D-M` is used in calculation of Kirchhoff matrix

- ``vertices`` -- list, ``None``, or ``True`` (default: ``None``);

- when a list, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering of ``vertices``,
- when ``None``, the `i`-th row and column of the matrix correspond to
the `i`-th vertex in the ordering given by
:meth:`GenericGraph.vertices` with ``sort=True``.
- when ``True``, construct an endomorphism of a free module instead of
a matrix, where the module's basis is indexed by the vertices.

If the vertices are not comparable, the keyword ``vertices`` must be
used to specify an ordering, or a :class:`TypeError` exception will
be raised.

Note that any additional keywords will be passed on to either the
:meth:`~GenericGraph.adjacency_matrix` or
:meth:`~GenericGraph.weighted_adjacency_matrix` method.
Expand Down Expand Up @@ -2788,18 +2896,36 @@ def kirchhoff_matrix(self, weighted=None, indegree=True, normalized=False, signl
sage: M = G.kirchhoff_matrix(vertices=[0, 1], immutable=True) # needs sage.modules
sage: M.is_immutable() # needs sage.modules
True

Creating a module morphism::

sage: # needs sage.modules
sage: G = Graph(sparse=True, weighted=True)
sage: G.add_edges([('A', 'B', 1), ('B', 'C', 2), ('A', 'C', 3), ('A', 'D', 4)])
sage: phi = G.laplacian_matrix(weighted=True, vertices=True); phi
Generic endomorphism of
Free module generated by {'A', 'B', 'C', 'D'} over Integer Ring
sage: print(phi._unicode_art_matrix())
A B C D
A⎛ 8 -1 -3 -4⎞
B⎜-1 3 -2 0⎟
C⎜-3 -2 5 0⎟
D⎝-4 0 0 4⎠

"""
from sage.matrix.constructor import diagonal_matrix
from sage.matrix.constructor import diagonal_matrix, matrix

set_immutable = kwds.pop('immutable', False)

vertex_indices, keys = self._vertex_indices_and_keys(kwds.pop('vertices', None))

if weighted is None:
weighted = self._weighted

if weighted:
M = self.weighted_adjacency_matrix(immutable=True, **kwds)
M = self.weighted_adjacency_matrix(vertices=list(vertex_indices), immutable=True, **kwds)
else:
M = self.adjacency_matrix(immutable=True, **kwds)
M = self.adjacency_matrix(vertices=list(vertex_indices), immutable=True, **kwds)

D = M.parent(0)

Expand Down Expand Up @@ -2839,6 +2965,8 @@ def kirchhoff_matrix(self, weighted=None, indegree=True, normalized=False, signl
else:
ret = D - M

if keys is not None:
return matrix(ret, row_keys=keys, column_keys=keys)
if set_immutable:
ret.set_immutable()
return ret
Expand Down
Loading
Loading