We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
calculate_image_features()
Hi, I'm seeing some errors when following Analyze Visium H&E data. In particular, calculate_image_features() returns this error message:
--------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[4], line 4 2 for scale in [1.0, 2.0]: 3 feature_name = f"features_summary_scale{scale}" ----> 4 sq.im.calculate_image_features( 5 adata, 6 img.compute(), 7 features="summary", 8 key_added=feature_name, 9 scale=scale, 10 ) 13 # combine features in one dataframe 14 adata.obsm["features"] = pd.concat( 15 [adata.obsm[f] for f in adata.obsm.keys() if "features_summary" in f], 16 axis="columns", 17 ) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_feature.py:91, in calculate_image_features(adata, img, layer, library_id, features, features_kwargs, key_added, copy, n_jobs, backend, show_progress_bar, **kwargs) 88 n_jobs = _get_n_cores(n_jobs) 89 start = logg.info(f"Calculating features `{list(features)}` using `{n_jobs}` core(s)") ---> 91 res = parallelize( 92 _calculate_image_features_helper, 93 collection=adata.obs_names, 94 extractor=pd.concat, 95 n_jobs=n_jobs, 96 backend=backend, 97 show_progress_bar=show_progress_bar, 98 )(adata, img, layer=layer, library_id=library_id, features=features, features_kwargs=features_kwargs, **kwargs) 100 if copy: 101 logg.info("Finish", time=start) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/_utils.py:168, in parallelize.<locals>.wrapper(*args, **kwargs) 165 else: 166 pbar, queue, thread = None, None, None --> 168 res = jl.Parallel(n_jobs=n_jobs, backend=backend)( 169 jl.delayed(runner if use_runner else callback)( 170 *((i, cs) if use_ixs else (cs,)), 171 *args, 172 **kwargs, 173 queue=queue, 174 ) 175 for i, cs in enumerate(collections) 176 ) 178 if thread is not None: 179 thread.join() File ~/miniconda3/envs/squid/lib/python3.10/site-packages/joblib/parallel.py:1918, in Parallel.__call__(self, iterable) 1916 output = self._get_sequential_output(iterable) 1917 next(output) -> 1918 return output if self.return_generator else list(output) 1920 # Let's create an ID that uniquely identifies the current call. If the 1921 # call is interrupted early and that the same instance is immediately 1922 # re-used, this id will be used to prevent workers that were 1923 # concurrently finalizing a task from the previous call to run the 1924 # callback. 1925 with self._lock: File ~/miniconda3/envs/squid/lib/python3.10/site-packages/joblib/parallel.py:1847, in Parallel._get_sequential_output(self, iterable) 1845 self.n_dispatched_batches += 1 1846 self.n_dispatched_tasks += 1 -> 1847 res = func(*args, **kwargs) 1848 self.n_completed_tasks += 1 1849 self.print_progress() File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_feature.py:119, in _calculate_image_features_helper(obs_ids, adata, img, layer, library_id, features, features_kwargs, queue, **kwargs) 107 def _calculate_image_features_helper( 108 obs_ids: Sequence[str], 109 adata: AnnData, (...) 116 **kwargs: Any, 117 ) -> pd.DataFrame: 118 features_list = [] --> 119 for crop in img.generate_spot_crops( 120 adata, obs_names=obs_ids, library_id=library_id, return_obs=False, as_array=False, **kwargs 121 ): 122 if TYPE_CHECKING: 123 assert isinstance(crop, ImageContainer) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_container.py:830, in ImageContainer.generate_spot_crops(self, adata, spatial_key, library_id, spot_diameter_key, spot_scale, obs_names, as_array, squeeze, return_obs, **kwargs) 828 y = int(y - self.data.attrs[Key.img.coords].y0) 829 x = int(x - self.data.attrs[Key.img.coords].x0) --> 830 crop = self.crop_center(y=y, x=x, radius=radius, library_id=obs_library_ids[i], **kwargs) 831 crop.data.attrs[Key.img.obs] = obs 832 crop = crop._maybe_as_array(as_array, squeeze=squeeze, lazy=False) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_container.py:661, in ImageContainer.crop_center(self, y, x, radius, **kwargs) 658 _assert_non_negative(yr, name="radius height") 659 _assert_non_negative(xr, name="radius width") --> 661 return self.crop_corner( # type: ignore[no-any-return] 662 y=y - yr, x=x - xr, size=(yr * 2 + 1, xr * 2 + 1), **kwargs 663 ) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_container.py:568, in ImageContainer.crop_corner(self, y, x, size, library_id, scale, cval, mask_circle, preserve_dtypes) 565 else: 566 crop.attrs[Key.img.padding] = _NULL_PADDING 567 return self._from_dataset( --> 568 self._post_process( 569 data=crop, scale=scale, cval=cval, mask_circle=mask_circle, preserve_dtypes=preserve_dtypes 570 ) 571 ) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_container.py:602, in ImageContainer._post_process(self, data, scale, cval, mask_circle, preserve_dtypes, **_) 600 attrs = data.attrs 601 library_ids = data.coords["z"] --> 602 data = data.map(_rescale).assign_coords({"z": library_ids}) 603 data.attrs = _update_attrs_scale(attrs, scale) 605 if mask_circle: File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/dataset.py:6931, in Dataset.map(self, func, keep_attrs, args, **kwargs) 6929 if keep_attrs is None: 6930 keep_attrs = _get_keep_attrs(default=False) -> 6931 variables = { 6932 k: maybe_wrap_array(v, func(v, *args, **kwargs)) 6933 for k, v in self.data_vars.items() 6934 } 6935 if keep_attrs: 6936 for k, v in variables.items(): File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/dataset.py:6932, in <dictcomp>(.0) 6929 if keep_attrs is None: 6930 keep_attrs = _get_keep_attrs(default=False) 6931 variables = { -> 6932 k: maybe_wrap_array(v, func(v, *args, **kwargs)) 6933 for k, v in self.data_vars.items() 6934 } 6935 if keep_attrs: 6936 for k, v in variables.items(): File ~/miniconda3/envs/squid/lib/python3.10/site-packages/squidpy/im/_container.py:597, in ImageContainer._post_process.<locals>._rescale(arr) 591 shape[-2] = arr.shape[-2] 592 return xr.DataArray( 593 da.from_delayed(delayed(lambda arr: scaling_fn(arr).astype(dtype))(arr), shape=shape, dtype=dtype), 594 dims=arr.dims, 595 ) --> 597 return xr.DataArray(scaling_fn(arr).astype(dtype), dims=arr.dims) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/skimage/_shared/utils.py:328, in channel_as_last_axis.__call__.<locals>.fixed_func(*args, **kwargs) 324 raise ValueError( 325 "only a single channel axis is currently supported") 327 if channel_axis == (-1,) or channel_axis == -1: --> 328 return func(*args, **kwargs) 330 if self.arg_positions: 331 new_args = [] File ~/miniconda3/envs/squid/lib/python3.10/site-packages/skimage/transform/_warps.py:289, in rescale(image, scale, order, mode, cval, clip, preserve_range, anti_aliasing, anti_aliasing_sigma, channel_axis) 286 if multichannel: # don't scale channel dimension 287 output_shape[-1] = orig_shape[-1] --> 289 return resize(image, output_shape, order=order, mode=mode, cval=cval, 290 clip=clip, preserve_range=preserve_range, 291 anti_aliasing=anti_aliasing, 292 anti_aliasing_sigma=anti_aliasing_sigma) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/skimage/transform/_warps.py:188, in resize(image, output_shape, order, mode, cval, clip, preserve_range, anti_aliasing, anti_aliasing_sigma) 184 zoom_factors = [1 / f for f in factors] 185 out = ndi.zoom(filtered, zoom_factors, order=order, mode=ndi_mode, 186 cval=cval, grid_mode=True) --> 188 _clip_warp_output(image, out, mode, cval, clip) 190 return out File ~/miniconda3/envs/squid/lib/python3.10/site-packages/skimage/transform/_warps.py:692, in _clip_warp_output(input_image, output_image, mode, cval, clip) 689 min_val = min(min_val, cval) 690 max_val = max(max_val, cval) --> 692 np.clip(output_image, min_val, max_val, out=output_image) File <__array_function__ internals>:180, in clip(*args, **kwargs) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/numpy/core/fromnumeric.py:2152, in clip(a, a_min, a_max, out, **kwargs) 2083 @array_function_dispatch(_clip_dispatcher) 2084 def clip(a, a_min, a_max, out=None, **kwargs): 2085 """ 2086 Clip (limit) the values in an array. 2087 (...) 2150 2151 """ -> 2152 return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/numpy/core/fromnumeric.py:57, in _wrapfunc(obj, method, *args, **kwds) 54 return _wrapit(obj, method, *args, **kwds) 56 try: ---> 57 return bound(*args, **kwds) 58 except TypeError: 59 # A TypeError occurs if the object does have such a method in its 60 # class, but its signature is not identical to that of NumPy's. This (...) 64 # Call _wrapit from within the except clause to ensure a potential 65 # exception has a traceback chain. 66 return _wrapit(obj, method, *args, **kwds) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/numpy/core/_methods.py:159, in _clip(a, min, max, out, casting, **kwargs) 156 return _clip_dep_invoke_with_casting( 157 um.maximum, a, min, out=out, casting=casting, **kwargs) 158 else: --> 159 return _clip_dep_invoke_with_casting( 160 um.clip, a, min, max, out=out, casting=casting, **kwargs) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/numpy/core/_methods.py:113, in _clip_dep_invoke_with_casting(ufunc, out, casting, *args, **kwargs) 111 # try to deal with broken casting rules 112 try: --> 113 return ufunc(*args, out=out, **kwargs) 114 except _exceptions._UFuncOutputCastingError as e: 115 # Numpy 1.17.0, 2019-02-24 116 warnings.warn( 117 "Converting the output of clip from {!r} to {!r} is deprecated. " 118 "Pass `casting=\"unsafe\"` explicitly to silence this warning, or " (...) 121 stacklevel=2 122 ) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/arithmetic.py:85, in SupportsArithmetic.__array_ufunc__(self, ufunc, method, *inputs, **kwargs) 76 raise NotImplementedError( 77 "xarray objects are not yet supported in the `out` argument " 78 "for ufuncs. As an alternative, consider explicitly " 79 "converting xarray objects to NumPy arrays (e.g., with " 80 "`.values`)." 81 ) 83 join = dataset_join = OPTIONS["arithmetic_join"] ---> 85 return apply_ufunc( 86 ufunc, 87 *inputs, 88 input_core_dims=((),) * ufunc.nin, 89 output_core_dims=((),) * ufunc.nout, 90 join=join, 91 dataset_join=dataset_join, 92 dataset_fill_value=np.nan, 93 kwargs=kwargs, 94 dask="allowed", 95 keep_attrs=_get_keep_attrs(default=True), 96 ) File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/computation.py:1267, in apply_ufunc(func, input_core_dims, output_core_dims, exclude_dims, vectorize, join, dataset_join, dataset_fill_value, keep_attrs, kwargs, dask, output_dtypes, output_sizes, meta, dask_gufunc_kwargs, on_missing_core_dim, *args) 1265 # feed DataArray apply_variable_ufunc through apply_dataarray_vfunc 1266 elif any(isinstance(a, DataArray) for a in args): -> 1267 return apply_dataarray_vfunc( 1268 variables_vfunc, 1269 *args, 1270 signature=signature, 1271 join=join, 1272 exclude_dims=exclude_dims, 1273 keep_attrs=keep_attrs, 1274 ) 1275 # feed Variables directly through apply_variable_ufunc 1276 elif any(isinstance(a, Variable) for a in args): File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/computation.py:315, in apply_dataarray_vfunc(func, signature, join, exclude_dims, keep_attrs, *args) 310 result_coords, result_indexes = build_output_coords_and_indexes( 311 args, signature, exclude_dims, combine_attrs=keep_attrs 312 ) 314 data_vars = [getattr(a, "variable", a) for a in args] --> 315 result_var = func(*data_vars) 317 out: tuple[DataArray, ...] | DataArray 318 if signature.num_outputs > 1: File ~/miniconda3/envs/squid/lib/python3.10/site-packages/xarray/core/computation.py:847, in apply_variable_ufunc(func, signature, exclude_dims, dask, output_dtypes, vectorize, keep_attrs, dask_gufunc_kwargs, *args) 845 data = as_compatible_data(data) 846 if data.ndim != len(dims): --> 847 raise ValueError( 848 "applied function returned data with an unexpected " 849 f"number of dimensions. Received {data.ndim} dimension(s) but " 850 f"expected {len(dims)} dimensions with names {dims!r}, from:\n\n" 851 f"{short_array_repr(data)}" 852 ) 854 var = Variable(dims, data, fastpath=True) 855 for dim, new_size in var.sizes.items(): ValueError: applied function returned data with an unexpected number of dimensions. Received 4 dimension(s) but expected 0 dimensions with names (), from: array([[[[100.5 , ..., 111.375 ]], ..., [[ 91.75 , ..., 80.6875]]], ..., [[[116. , ..., 114. ]], ..., [[120.25 , ..., 112.25 ]]]])
This is my environment.yml.
environment.yml
name: squid channels: - conda-forge - defaults dependencies: - _libgcc_mutex=0.1=conda_forge - _openmp_mutex=4.5=2_gnu - aiohttp=3.9.5=py310h2372a71_0 - aiosignal=1.3.1=pyhd8ed1ab_0 - anndata=0.8.0=pyhd8ed1ab_1 - anyio=4.3.0=pyhd8ed1ab_0 - aom=3.9.0=hac33072_0 - argon2-cffi=23.1.0=pyhd8ed1ab_0 - argon2-cffi-bindings=21.2.0=py310h2372a71_4 - arpack=3.7.0=hdefa2d7_2 - arrow=1.3.0=pyhd8ed1ab_0 - asciitree=0.3.3=py_2 - asttokens=2.4.1=pyhd8ed1ab_0 - async-lru=2.0.4=pyhd8ed1ab_0 - async-timeout=4.0.3=pyhd8ed1ab_0 - attrs=23.2.0=pyh71513ae_0 - aws-c-auth=0.7.20=h5f1c8d9_0 - aws-c-cal=0.6.12=h2ba76a8_0 - aws-c-common=0.9.17=h4ab18f5_0 - aws-c-compression=0.2.18=h36a0aea_4 - aws-c-event-stream=0.4.2=h161de36_10 - aws-c-http=0.8.1=h63f54a0_13 - aws-c-io=0.14.8=h96d4d28_0 - aws-c-mqtt=0.10.4=hcc7299c_2 - aws-c-s3=0.5.8=h10bd90f_3 - aws-c-sdkutils=0.1.16=h36a0aea_0 - aws-checksums=0.1.18=h36a0aea_4 - aws-crt-cpp=0.26.8=h02fd9b4_10 - aws-sdk-cpp=1.11.267=h51dfee4_8 - babel=2.14.0=pyhd8ed1ab_0 - beautifulsoup4=4.12.3=pyha770c72_0 - bleach=6.1.0=pyhd8ed1ab_0 - blosc=1.21.5=hc2324a3_1 - bokeh=3.4.1=pyhd8ed1ab_0 - brotli=1.1.0=hd590300_1 - brotli-bin=1.1.0=hd590300_1 - brotli-python=1.1.0=py310hc6cd4ac_1 - brunsli=0.1=h9c3ff4c_0 - bzip2=1.0.8=hd590300_5 - c-ares=1.28.1=hd590300_0 - c-blosc2=2.14.4=hb4ffafa_1 - ca-certificates=2024.2.2=hbcca054_0 - cached-property=1.5.2=hd8ed1ab_1 - cached_property=1.5.2=pyha770c72_1 - certifi=2024.2.2=pyhd8ed1ab_0 - cffi=1.16.0=py310h2fee648_0 - charls=2.4.2=h59595ed_0 - charset-normalizer=3.3.2=pyhd8ed1ab_0 - click=8.1.7=unix_pyh707e725_0 - cloudpickle=3.0.0=pyhd8ed1ab_0 - colorama=0.4.6=pyhd8ed1ab_0 - comm=0.2.2=pyhd8ed1ab_0 - contourpy=1.2.1=py310hd41b1e2_0 - cycler=0.12.1=pyhd8ed1ab_0 - cytoolz=0.12.3=py310h2372a71_0 - dask=2024.2.1=pyhd8ed1ab_0 - dask-core=2024.2.1=pyhd8ed1ab_1 - dask-image=2023.3.0=pyhd8ed1ab_0 - dav1d=1.2.1=hd590300_0 - debugpy=1.8.1=py310hc6cd4ac_0 - decorator=5.1.1=pyhd8ed1ab_0 - defusedxml=0.7.1=pyhd8ed1ab_0 - distributed=2024.2.1=pyhd8ed1ab_0 - docrep=0.3.2=pyh44b312d_0 - entrypoints=0.4=pyhd8ed1ab_0 - exceptiongroup=1.2.0=pyhd8ed1ab_2 - executing=2.0.1=pyhd8ed1ab_0 - fasteners=0.17.3=pyhd8ed1ab_0 - fonttools=4.51.0=py310h2372a71_0 - fqdn=1.5.1=pyhd8ed1ab_0 - freetype=2.12.1=h267a509_2 - frozenlist=1.4.1=py310h2372a71_0 - fsspec=2024.3.1=pyhca7485f_0 - gflags=2.2.2=he1b5a44_1004 - giflib=5.2.2=hd590300_0 - glog=0.7.0=hed5481d_0 - glpk=5.0=h445213a_0 - gmp=6.3.0=h59595ed_1 - h11=0.14.0=pyhd8ed1ab_0 - h2=4.1.0=pyhd8ed1ab_0 - h5py=3.11.0=nompi_py310h65828d5_100 - hdf5=1.14.3=nompi_h4f84152_101 - hpack=4.0.0=pyh9f0ad1d_0 - httpcore=1.0.5=pyhd8ed1ab_0 - httpx=0.27.0=pyhd8ed1ab_0 - hyperframe=6.0.1=pyhd8ed1ab_0 - icu=73.2=h59595ed_0 - idna=3.7=pyhd8ed1ab_0 - igraph=0.10.7=h27e60f0_0 - imagecodecs=2024.1.1=py310h06b5df7_6 - imageio=2.34.1=pyh4b66e23_0 - importlib-metadata=7.1.0=pyha770c72_0 - importlib_metadata=7.1.0=hd8ed1ab_0 - importlib_resources=6.4.0=pyhd8ed1ab_0 - inflect=7.2.1=pyhd8ed1ab_0 - ipykernel=6.29.3=pyhd33586a_0 - ipython=8.24.0=pyh707e725_0 - ipywidgets=8.1.2=pyhd8ed1ab_1 - isoduration=20.11.0=pyhd8ed1ab_0 - jedi=0.19.1=pyhd8ed1ab_0 - jinja2=3.1.4=pyhd8ed1ab_0 - joblib=1.4.2=pyhd8ed1ab_0 - json5=0.9.25=pyhd8ed1ab_0 - jsonpointer=2.4=py310hff52083_3 - jsonschema=4.22.0=pyhd8ed1ab_0 - jsonschema-specifications=2023.12.1=pyhd8ed1ab_0 - jsonschema-with-format-nongpl=4.22.0=pyhd8ed1ab_0 - jupyter=1.0.0=pyhd8ed1ab_10 - jupyter-lsp=2.2.5=pyhd8ed1ab_0 - jupyter_client=8.6.1=pyhd8ed1ab_0 - jupyter_console=6.6.3=pyhd8ed1ab_0 - jupyter_core=5.7.2=py310hff52083_0 - jupyter_events=0.10.0=pyhd8ed1ab_0 - jupyter_server=2.14.0=pyhd8ed1ab_0 - jupyter_server_terminals=0.5.3=pyhd8ed1ab_0 - jupyterlab=4.1.8=pyhd8ed1ab_0 - jupyterlab_pygments=0.3.0=pyhd8ed1ab_1 - jupyterlab_server=2.27.1=pyhd8ed1ab_0 - jupyterlab_widgets=3.0.10=pyhd8ed1ab_0 - jxrlib=1.1=hd590300_3 - keyutils=1.6.1=h166bdaf_0 - kiwisolver=1.4.5=py310hd41b1e2_1 - krb5=1.21.2=h659d440_0 - lazy_loader=0.4=pyhd8ed1ab_0 - lcms2=2.16=hb7c19ff_0 - ld_impl_linux-64=2.40=h55db66e_0 - leidenalg=0.10.1=py310hc6cd4ac_1 - lerc=4.0.0=h27087fc_0 - libabseil=20240116.2=cxx17_h59595ed_0 - libaec=1.1.3=h59595ed_0 - libarrow=16.0.0=hefa796f_1_cpu - libarrow-acero=16.0.0=hac33072_1_cpu - libarrow-dataset=16.0.0=hac33072_1_cpu - libarrow-substrait=16.0.0=h7e0c224_1_cpu - libavif16=1.0.4=hfa3d5b6_3 - libblas=3.9.0=20_linux64_openblas - libbrotlicommon=1.1.0=hd590300_1 - libbrotlidec=1.1.0=hd590300_1 - libbrotlienc=1.1.0=hd590300_1 - libcblas=3.9.0=20_linux64_openblas - libcrc32c=1.1.2=h9c3ff4c_0 - libcurl=8.7.1=hca28451_0 - libdeflate=1.20=hd590300_0 - libedit=3.1.20191231=he28a2e2_2 - libev=4.33=hd590300_2 - libevent=2.1.12=hf998b51_1 - libffi=3.4.2=h7f98852_5 - libgcc-ng=13.2.0=h77fa898_7 - libgfortran-ng=13.2.0=h69a702a_7 - libgfortran5=13.2.0=hca663fb_7 - libgomp=13.2.0=h77fa898_7 - libgoogle-cloud=2.23.0=h9be4e54_1 - libgoogle-cloud-storage=2.23.0=hc7a4891_1 - libgrpc=1.62.2=h15f2491_0 - libhwloc=2.10.0=default_h2fb2949_1000 - libhwy=1.1.0=h00ab1b0_0 - libiconv=1.17=hd590300_2 - libjpeg-turbo=3.0.0=hd590300_1 - libjxl=0.10.2=hcae5a98_0 - liblapack=3.9.0=20_linux64_openblas - libleidenalg=0.11.1=h00ab1b0_0 - libllvm11=11.1.0=he0ac6c6_5 - libnghttp2=1.58.0=h47da74e_1 - libnsl=2.0.1=hd590300_0 - libopenblas=0.3.25=pthreads_h413a1c8_0 - libparquet=16.0.0=h6a7eafb_1_cpu - libpng=1.6.43=h2797004_0 - libprotobuf=4.25.3=h08a7969_0 - libre2-11=2023.09.01=h5a48ba9_2 - libsodium=1.0.18=h36c2ea0_1 - libsqlite=3.45.3=h2797004_0 - libssh2=1.11.0=h0841786_0 - libstdcxx-ng=13.2.0=hc0a3c3a_7 - libthrift=0.19.0=hb90f79a_1 - libtiff=4.6.0=h1dd3fc0_3 - libutf8proc=2.8.0=h166bdaf_0 - libuuid=2.38.1=h0b41bf4_0 - libwebp-base=1.4.0=hd590300_0 - libxcb=1.15=h0b41bf4_0 - libxcrypt=4.4.36=hd590300_1 - libxml2=2.12.7=hc051c1a_0 - libzlib=1.2.13=hd590300_5 - libzopfli=1.0.3=h9c3ff4c_0 - llvmlite=0.38.1=py310h58363a5_0 - locket=1.0.0=pyhd8ed1ab_0 - lz4=4.3.3=py310h350c4a5_0 - lz4-c=1.9.4=hcb278e6_0 - markupsafe=2.1.5=py310h2372a71_0 - matplotlib-base=3.8.4=py310h62c0568_0 - matplotlib-inline=0.1.7=pyhd8ed1ab_0 - matplotlib-scalebar=0.8.1=pyhd8ed1ab_0 - metis=5.1.0=h59595ed_1007 - mistune=3.0.2=pyhd8ed1ab_0 - more-itertools=10.2.0=pyhd8ed1ab_0 - mpfr=4.2.1=h9458935_1 - msgpack-python=1.0.8=py310h25c7140_0 - multidict=6.0.5=py310h2372a71_0 - munkres=1.1.4=pyh9f0ad1d_0 - natsort=8.4.0=pyhd8ed1ab_0 - nbclient=0.10.0=pyhd8ed1ab_0 - nbconvert=7.16.4=hd8ed1ab_0 - nbconvert-core=7.16.4=pyhd8ed1ab_0 - nbconvert-pandoc=7.16.4=hd8ed1ab_0 - nbformat=5.10.4=pyhd8ed1ab_0 - ncurses=6.5=h59595ed_0 - nest-asyncio=1.6.0=pyhd8ed1ab_0 - networkx=3.3=pyhd8ed1ab_1 - notebook=7.1.3=pyhd8ed1ab_0 - notebook-shim=0.2.4=pyhd8ed1ab_0 - numba=0.55.2=py310ha5257ce_0 - numcodecs=0.12.1=py310h76e45a6_1 - numpy=1.22.4=py310h4ef5377_0 - omnipath=1.0.8=pyhd8ed1ab_0 - openjpeg=2.5.2=h488ebb8_0 - openssl=3.3.0=hd590300_0 - orc=2.0.0=h17fec99_1 - overrides=7.7.0=pyhd8ed1ab_0 - packaging=24.0=pyhd8ed1ab_0 - pandas=1.5.1=py310h769672d_1 - pandoc=3.2=ha770c72_0 - pandocfilters=1.5.0=pyhd8ed1ab_0 - parso=0.8.4=pyhd8ed1ab_0 - partd=1.4.2=pyhd8ed1ab_0 - patsy=0.5.6=pyhd8ed1ab_0 - pexpect=4.9.0=pyhd8ed1ab_0 - pickleshare=0.7.5=py_1003 - pillow=10.3.0=py310hf73ecf8_0 - pims=0.6.1=pyhd8ed1ab_1 - pip=24.0=pyhd8ed1ab_0 - pkgutil-resolve-name=1.3.10=pyhd8ed1ab_1 - platformdirs=4.2.1=pyhd8ed1ab_0 - prometheus_client=0.20.0=pyhd8ed1ab_0 - prompt-toolkit=3.0.42=pyha770c72_0 - prompt_toolkit=3.0.42=hd8ed1ab_0 - psutil=5.9.8=py310h2372a71_0 - pthread-stubs=0.4=h36c2ea0_1001 - ptyprocess=0.7.0=pyhd3deb0d_0 - pure_eval=0.2.2=pyhd8ed1ab_0 - pyarrow=16.0.0=py310h17c5347_0 - pyarrow-core=16.0.0=py310h6f79a3a_0_cpu - pyarrow-hotfix=0.6=pyhd8ed1ab_0 - pycparser=2.22=pyhd8ed1ab_0 - pygments=2.18.0=pyhd8ed1ab_0 - pynndescent=0.5.7=pyh6c4a22f_0 - pyparsing=3.1.2=pyhd8ed1ab_0 - pysocks=1.7.1=pyha2e5f31_6 - python=3.10.14=hd12c33a_0_cpython - python-dateutil=2.9.0=pyhd8ed1ab_0 - python-fastjsonschema=2.19.1=pyhd8ed1ab_0 - python-igraph=0.10.2=py310h18f4e01_1 - python-json-logger=2.0.7=pyhd8ed1ab_0 - python_abi=3.10=4_cp310 - pytz=2024.1=pyhd8ed1ab_0 - pywavelets=1.4.1=py310h1f7b6fc_1 - pyyaml=6.0.1=py310h2372a71_1 - pyzmq=26.0.3=py310h6883aea_0 - qtconsole-base=5.5.2=pyha770c72_0 - qtpy=2.4.1=pyhd8ed1ab_0 - rav1e=0.6.6=he8a937b_2 - re2=2023.09.01=h7f4b329_2 - readline=8.2=h8228510_1 - referencing=0.35.1=pyhd8ed1ab_0 - requests=2.31.0=pyhd8ed1ab_0 - rfc3339-validator=0.1.4=pyhd8ed1ab_0 - rfc3986-validator=0.1.1=pyh9f0ad1d_0 - rpds-py=0.18.1=py310he421c4c_0 - s2n=1.4.13=he19d79f_0 - scanpy=1.9.2=pyhd8ed1ab_0 - scikit-image=0.22.0=py310hcc13569_2 - scikit-learn=1.1.3=py310h0c3af53_1 - scipy=1.9.3=py310hdfbd76f_2 - seaborn=0.13.2=hd8ed1ab_2 - seaborn-base=0.13.2=pyhd8ed1ab_2 - send2trash=1.8.3=pyh0d859eb_0 - session-info=1.0.0=pyhd8ed1ab_0 - setuptools=69.5.1=pyhd8ed1ab_0 - six=1.16.0=pyh6c4a22f_0 - slicerator=1.1.0=pyhd8ed1ab_0 - snappy=1.2.0=hdb0a2a9_1 - sniffio=1.3.1=pyhd8ed1ab_0 - sortedcontainers=2.4.0=pyhd8ed1ab_0 - soupsieve=2.5=pyhd8ed1ab_1 - squidpy=1.2.3=pyhd8ed1ab_0 - stack_data=0.6.2=pyhd8ed1ab_0 - statsmodels=0.13.2=py310hde88566_0 - stdlib-list=0.10.0=pyhd8ed1ab_0 - suitesparse=5.10.1=h5a4f163_3 - svt-av1=2.0.0=h59595ed_0 - tbb=2021.12.0=h00ab1b0_0 - tblib=3.0.0=pyhd8ed1ab_0 - terminado=0.18.1=pyh0d859eb_0 - texttable=1.7.0=pyhd8ed1ab_0 - threadpoolctl=3.5.0=pyhc1e730c_0 - tifffile=2024.5.10=pyhd8ed1ab_0 - tinycss2=1.3.0=pyhd8ed1ab_0 - tk=8.6.13=noxft_h4845f30_101 - tomli=2.0.1=pyhd8ed1ab_0 - toolz=0.12.1=pyhd8ed1ab_0 - tornado=6.4=py310h2372a71_0 - tqdm=4.66.4=pyhd8ed1ab_0 - traitlets=5.14.3=pyhd8ed1ab_0 - typeguard=4.2.1=pyhd8ed1ab_0 - types-python-dateutil=2.9.0.20240316=pyhd8ed1ab_0 - typing-extensions=4.11.0=hd8ed1ab_0 - typing_extensions=4.11.0=pyha770c72_0 - typing_utils=0.1.0=pyhd8ed1ab_0 - tzdata=2024a=h0c530f3_0 - umap-learn=0.5.5=py310hff52083_1 - unicodedata2=15.1.0=py310h2372a71_0 - uri-template=1.3.0=pyhd8ed1ab_0 - urllib3=2.2.1=pyhd8ed1ab_0 - validators=0.28.1=pyhd8ed1ab_0 - wcwidth=0.2.13=pyhd8ed1ab_0 - webcolors=1.13=pyhd8ed1ab_0 - webencodings=0.5.1=pyhd8ed1ab_2 - websocket-client=1.8.0=pyhd8ed1ab_0 - wheel=0.43.0=pyhd8ed1ab_1 - widgetsnbextension=4.0.10=pyhd8ed1ab_0 - wrapt=1.16.0=py310h2372a71_0 - xarray=2023.12.0=pyhd8ed1ab_0 - xorg-libxau=1.0.11=hd590300_0 - xorg-libxdmcp=1.1.3=h7f98852_0 - xyzservices=2024.4.0=pyhd8ed1ab_0 - xz=5.2.6=h166bdaf_0 - yaml=0.2.5=h7f98852_2 - yarl=1.9.4=py310h2372a71_0 - zarr=2.17.1=pyhd8ed1ab_0 - zeromq=4.3.5=h75354e8_4 - zfp=1.0.1=h59595ed_0 - zict=3.0.0=pyhd8ed1ab_0 - zipp=3.17.0=pyhd8ed1ab_0 - zlib=1.2.13=hd590300_5 - zlib-ng=2.0.7=h0b41bf4_0 - zstd=1.5.6=ha6fb4c9_0
I would have liked to import the environment.yml, but the link to it is broken. I'd appreciate it greatly if anyone could advise.
squidpy==1.2.3
The text was updated successfully, but these errors were encountered:
The function in question runs without error when the for loop is removed:
sq.im.calculate_image_features( adata, img.compute(), features = "summary", key_added = "features", layer = "image", n_jobs = 4 )
From the documentation, scale doesn't seem to be one of available options. Any value for scale other than 1 results in an error.
scale
Sorry, something went wrong.
Thank you for developing this wonderful package. Having the same problem here. Using squidpy version 1.2.2
timtreis
No branches or pull requests
Description
Hi,
I'm seeing some errors when following Analyze Visium H&E data. In particular,
calculate_image_features()
returns this error message:This is my
environment.yml
.I would have liked to import the
environment.yml
, but the link to it is broken. I'd appreciate it greatly if anyone could advise.Version
squidpy==1.2.3
The text was updated successfully, but these errors were encountered: