A MCP (Model Context Protocol) server that transforms CSV data into beautiful visualizations. Built with Python and optimized for seamless integration with AI assistants and chat applications.
- π Multiple Plot Types: Create line charts, bar graphs, pie charts, and world maps
- π Geographic Visualization: Built-in support for plotting coordinate data on world maps using Cartopy
- π§ Flexible Parameters: Fine-tune your plots with JSON-based configuration options
- π± Chat-Ready Output: Returns base64-encoded PNG images perfect for AI chat interfaces
- β‘ Fast Processing: Efficient CSV parsing and plot generation with pandas and matplotlib
make install
uv sync
uv run plotting-mcp
The server runs on port 9090 by default.
Transform your CSV data into stunning visualizations.
Parameters:
csv_data
(str): CSV data as a stringplot_type
(str): Plot type -line
,bar
,pie
, orworldmap
json_kwargs
(str): JSON string with plotting parameters for customization
Plotting Options:
- Line/Bar Charts: Use Seaborn parameters (
x
,y
,hue
for data mapping) - World Maps: Automatic coordinate detection (
lat
/latitude
/y
andlon
/longitude
/x
)- Customize with
s
(size),c
(color),alpha
(transparency),marker
(style)
- Customize with
- Pie Charts: Supports single column (value counts) or two columns (labels + values)
Returns: Base64-encoded PNG image ready for display
Perfect for enhancing AI conversations with data visualization capabilities. The server returns plots as base64-encoded PNG images that display seamlessly in:
- LibreChat: Direct integration for chat-based data analysis
- Claude Desktop: Through
mcp-remote
command to transform from HTTP transport to stdio
{
"mcpServers": {
"plotting": {
"command": "uvx",
"args": [
"--from", "/path/to/plotting-mcp",
"plotting-mcp", "--transport=stdio"
]
}
}
}
- Custom AI Applications: Easy integration via MCP protocol
- Development Tools: Compatible with any MCP-enabled environment
Image Format: High-quality PNG with configurable DPI and sizing
Deploy and manage your plotting server effortlessly with ToolHive - a platform that provides containerized, secure environments for MCP servers across UI, CLI, and Kubernetes modes.
Benefits:
- π Secure Containerization: Isolated environments with comprehensive security controls
- βοΈ Multiple Deployment Options: UI, CLI, and Kubernetes support
- π§ Developer-Friendly: Seamless integration with popular development tools
π Resources:
docker build -t plotting-mcp .
thv run --name plotting-mcp --transport streamable-http plotting-mcp:latest
- Create a PVC for the MCP server. This is needed since the plotting libraries Matplotlib and Cartopy require a writable filesystem to cache data:
kubectl apply -f toolhive-pvc.yaml
- Deploy the MCP server in K8s. In the
toolhive-deployment.yaml
, you can customize theimage
field to point to your image registry.
kubectl apply -f toolhive-deployment.yaml
- Once the MCP server is deployed, do port-forwarding
kubectl port-forward svc/mcp-plotting-mcp-proxy 9090:9090
Built with modern Python tooling for a great developer experience.
Tech Stack:
- π Python 3.13+: Latest Python features
- π Seaborn & Matplotlib: Professional-grade plotting
- π Cartopy: Advanced geospatial visualization
- β‘ FastMCP: High-performance MCP server framework
- π§ UV: Fast Python package management
# Format code and fix linting issues
make format
# Type checking
make typecheck
# Or use uv directly
uv run ruff format .
uv run ruff check --fix .
uv run ty check