Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
68 changes: 64 additions & 4 deletions lib/node_modules/@stdlib/stats/base/dists/kumaraswamy/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,15 +102,75 @@ var y = dist.logpdf( 0.8 );

## Examples

<!-- TODO: better examples -->

<!-- eslint no-undef: "error" -->

```javascript
var objectKeys = require( '@stdlib/utils/keys' );
var kumaraswamy = require( '@stdlib/stats/base/dists/kumaraswamy' );

console.log( objectKeys( kumaraswamy ) );
// Create a Kumaraswamy distribution object:
var a = 2.0;
var b = 5.0;
var dist = new kumaraswamy.Kumaraswamy( a, b );

// Calculate basic distribution properties:
console.log( 'Mean: %d', dist.mean );
console.log( 'Median: %d', dist.median );
console.log( 'Mode: %d', dist.mode );
console.log( 'Variance: %d', dist.variance );

// Evaluate the probability density function (PDF):
var x = 0.5;
var y = dist.pdf( x );
console.log( 'PDF at x = %d: %d', x, y );

// Evaluate the cumulative distribution function (CDF):
y = dist.cdf( x );
console.log( 'CDF at x = %d: %d', x, y );

// Evaluate the natural logarithm of PDF and CDF:
console.log( 'Log PDF at x = %d: %d', x, dist.logpdf( x ) );
console.log( 'Log CDF at x = %d: %d', x, dist.logcdf( x ) );

// Calculate the quantile for a given probability:
var p = 0.75;
x = dist.quantile( p );
console.log( 'Quantile at p = %d: %d', p, x );

// Use standalone distribution functions:
x = 0.3;
y = kumaraswamy.pdf( x, a, b );
console.log( 'Standalone PDF at x = %d: %d', x, y );

y = kumaraswamy.cdf( x, a, b );
console.log( 'Standalone CDF at x = %d: %d', x, y );

y = kumaraswamy.quantile( 0.9, a, b );
console.log( 'Standalone Quantile at p = 0.9: %d', y );

// Calculate additional distribution properties:
console.log( 'Kurtosis: %d', kumaraswamy.kurtosis( a, b ) );
console.log( 'Skewness: %d', kumaraswamy.skewness( a, b ) );
console.log( 'Standard Deviation: %d', kumaraswamy.stdev( a, b ) );

// Demonstrate the effect of different shape parameters:
console.log( '\nEffect of shape parameters:' );
var shapes = [
[ 0.5, 0.5 ],
[ 5.0, 1.0 ],
[ 1.0, 5.0 ],
[ 2.0, 2.0 ],
[ 10.0, 10.0 ]
];
var params;
var i;
for ( i = 0; i < shapes.length; i++ ) {
params = shapes[i];
console.log( '\na = %d, b = %d', params[0], params[1] );
console.log( 'Mean: %d', kumaraswamy.mean( params[0], params[1] ) );
console.log( 'Median: %d', kumaraswamy.median( params[0], params[1] ) );
console.log( 'Mode: %d', kumaraswamy.mode( params[0], params[1] ) );
console.log( 'Skewness: %d', kumaraswamy.skewness( params[0], params[1] ) );
}
```

</section>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,69 @@

'use strict';

var objectKeys = require( '@stdlib/utils/keys' );
var kumaraswamy = require( './../lib' );

console.log( objectKeys( kumaraswamy ) );
// Create a Kumaraswamy distribution object:
var a = 2.0;
var b = 5.0;
var dist = new kumaraswamy.Kumaraswamy( a, b );

// Calculate basic distribution properties:
console.log( 'Mean: %d', dist.mean );
console.log( 'Median: %d', dist.median );
console.log( 'Mode: %d', dist.mode );
console.log( 'Variance: %d', dist.variance );

// Evaluate the probability density function (PDF):
var x = 0.5;
var y = dist.pdf( x );
console.log( 'PDF at x = %d: %d', x, y );

// Evaluate the cumulative distribution function (CDF):
y = dist.cdf( x );
console.log( 'CDF at x = %d: %d', x, y );

// Evaluate the natural logarithm of PDF and CDF:
console.log( 'Log PDF at x = %d: %d', x, dist.logpdf( x ) );
console.log( 'Log CDF at x = %d: %d', x, dist.logcdf( x ) );

// Calculate the quantile for a given probability:
var p = 0.75;
x = dist.quantile( p );
console.log( 'Quantile at p = %d: %d', p, x );

// Use standalone distribution functions:
x = 0.3;
y = kumaraswamy.pdf( x, a, b );
console.log( 'Standalone PDF at x = %d: %d', x, y );

y = kumaraswamy.cdf( x, a, b );
console.log( 'Standalone CDF at x = %d: %d', x, y );

y = kumaraswamy.quantile( 0.9, a, b );
console.log( 'Standalone Quantile at p = 0.9: %d', y );

// Calculate additional distribution properties:
console.log( 'Kurtosis: %d', kumaraswamy.kurtosis( a, b ) );
console.log( 'Skewness: %d', kumaraswamy.skewness( a, b ) );
console.log( 'Standard Deviation: %d', kumaraswamy.stdev( a, b ) );

// Demonstrate the effect of different shape parameters:
console.log( '\nEffect of shape parameters:' );
var shapes = [
[ 0.5, 0.5 ],
[ 5.0, 1.0 ],
[ 1.0, 5.0 ],
[ 2.0, 2.0 ],
[ 10.0, 10.0 ]
];
var params;
var i;
for ( i = 0; i < shapes.length; i++ ) {
params = shapes[ i ];
console.log( '\na = %d, b = %d', params[0], params[1] );
console.log( 'Mean: %d', kumaraswamy.mean( params[0], params[1] ) );
console.log( 'Median: %d', kumaraswamy.median( params[0], params[1] ) );
console.log( 'Mode: %d', kumaraswamy.mode( params[0], params[1] ) );
console.log( 'Skewness: %d', kumaraswamy.skewness( params[0], params[1] ) );
}
Loading