Skip to content

docs: update namespace table of contents #4658

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 9, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions lib/node_modules/@stdlib/blas/ext/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -87,8 +87,8 @@ var ns = extblas;
- <span class="signature">[`dsum( N, x, strideX )`][@stdlib/blas/ext/base/dsum]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements.</span>
- <span class="signature">[`dsumkbn( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`dsumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/dsumkbn2]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`dsumors( N, x, stride )`][@stdlib/blas/ext/base/dsumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.</span>
- <span class="signature">[`dsumpw( N, x, stride )`][@stdlib/blas/ext/base/dsumpw]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using pairwise summation.</span>
- <span class="signature">[`dsumors( N, x, strideX )`][@stdlib/blas/ext/base/dsumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using ordinary recursive summation.</span>
- <span class="signature">[`dsumpw( N, x, strideX )`][@stdlib/blas/ext/base/dsumpw]</span><span class="delimiter">: </span><span class="description">calculate the sum of double-precision floating-point strided array elements using pairwise summation.</span>
- <span class="signature">[`gapx( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapx]</span><span class="delimiter">: </span><span class="description">add a constant to each element in a strided array.</span>
- <span class="signature">[`gapxsum( N, alpha, x, stride )`][@stdlib/blas/ext/base/gapxsum]</span><span class="delimiter">: </span><span class="description">add a constant to each strided array element and compute the sum.</span>
- <span class="signature">[`gapxsumkbn( N, alpha, x, strideX )`][@stdlib/blas/ext/base/gapxsumkbn]</span><span class="delimiter">: </span><span class="description">add a scalar constant to each strided array element and compute the sum using an improved Kahan–Babuška algorithm.</span>
Expand All @@ -104,11 +104,11 @@ var ns = extblas;
- <span class="signature">[`gfillBy( N, x, stride, clbk[, thisArg] )`][@stdlib/blas/ext/base/gfill-by]</span><span class="delimiter">: </span><span class="description">fill a strided array according to a provided callback function.</span>
- <span class="signature">[`gfill( N, alpha, x, stride )`][@stdlib/blas/ext/base/gfill]</span><span class="delimiter">: </span><span class="description">fill a strided array with a specified scalar constant.</span>
- <span class="signature">[`gnannsumkbn( N, x, strideX, out, strideOut )`][@stdlib/blas/ext/base/gnannsumkbn]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`gnansum( N, x, stride )`][@stdlib/blas/ext/base/gnansum]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values.</span>
- <span class="signature">[`gnansumkbn( N, x, stride )`][@stdlib/blas/ext/base/gnansumkbn]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`gnansumkbn2( N, x, stride )`][@stdlib/blas/ext/base/gnansumkbn2]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`gnansumors( N, x, stride )`][@stdlib/blas/ext/base/gnansumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`gnansumpw( N, x, stride )`][@stdlib/blas/ext/base/gnansumpw]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.</span>
- <span class="signature">[`gnansum( N, x, strideX )`][@stdlib/blas/ext/base/gnansum]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values.</span>
- <span class="signature">[`gnansumkbn( N, x, strideX )`][@stdlib/blas/ext/base/gnansumkbn]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using an improved Kahan–Babuška algorithm.</span>
- <span class="signature">[`gnansumkbn2( N, x, strideX )`][@stdlib/blas/ext/base/gnansumkbn2]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using a second-order iterative Kahan–Babuška algorithm.</span>
- <span class="signature">[`gnansumors( N, x, strideX )`][@stdlib/blas/ext/base/gnansumors]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using ordinary recursive summation.</span>
- <span class="signature">[`gnansumpw( N, x, strideX )`][@stdlib/blas/ext/base/gnansumpw]</span><span class="delimiter">: </span><span class="description">calculate the sum of strided array elements, ignoring `NaN` values and using pairwise summation.</span>
- <span class="signature">[`grev( N, x, stride )`][@stdlib/blas/ext/base/grev]</span><span class="delimiter">: </span><span class="description">reverse a strided array in-place.</span>
- <span class="signature">[`gsort2hp( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/gsort2hp]</span><span class="delimiter">: </span><span class="description">simultaneously sort two strided arrays based on the sort order of the first array using heapsort.</span>
- <span class="signature">[`gsort2ins( N, order, x, strideX, y, strideY )`][@stdlib/blas/ext/base/gsort2ins]</span><span class="delimiter">: </span><span class="description">simultaneously sort two strided arrays based on the sort order of the first array using insertion sort.</span>
Expand Down
10 changes: 5 additions & 5 deletions lib/node_modules/@stdlib/stats/base/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
- <span class="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><span class="delimiter">: </span><span class="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dmeanwd( N, x, stride )`][@stdlib/stats/base/dmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dmeanwd( N, x, strideX )`][@stdlib/stats/base/dmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dmediansorted( N, x, strideX )`][@stdlib/stats/base/dmediansorted]</span><span class="delimiter">: </span><span class="description">calculate the median value of a sorted double-precision floating-point strided array.</span>
- <span class="signature">[`dmidrange( N, x, strideX )`][@stdlib/stats/base/dmidrange]</span><span class="delimiter">: </span><span class="description">calculate the mid-range of a double-precision floating-point strided array.</span>
- <span class="signature">[`dmin( N, x, strideX )`][@stdlib/stats/base/dmin]</span><span class="delimiter">: </span><span class="description">calculate the minimum value of a double-precision floating-point strided array.</span>
Expand Down Expand Up @@ -132,11 +132,11 @@ The namespace contains the following statistical functions:
- <span class="signature">[`dsnanmeanpn( N, x, stride )`][@stdlib/stats/base/dsnanmeanpn]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using a two-pass error correction algorithm with extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dsnanmeanwd( N, x, stride )`][@stdlib/stats/base/dsnanmeanwd]</span><span class="delimiter">: </span><span class="description">calculate the arithmetic mean of a single-precision floating-point strided array, ignoring `NaN` values, using Welford's algorithm with extended accumulation, and returning an extended precision result.</span>
- <span class="signature">[`dstdev( N, correction, x, stride )`][@stdlib/stats/base/dstdev]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array.</span>
- <span class="signature">[`dstdevch( N, correction, x, stride )`][@stdlib/stats/base/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dstdevch( N, correction, x, strideX )`][@stdlib/stats/base/dstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass trial mean algorithm.</span>
- <span class="signature">[`dstdevpn( N, correction, x, stride )`][@stdlib/stats/base/dstdevpn]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
- <span class="signature">[`dstdevtk( N, correction, x, stride )`][@stdlib/stats/base/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
- <span class="signature">[`dstdevwd( N, correction, x, stride )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dstdevyc( N, correction, x, stride )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dstdevtk( N, correction, x, strideX )`][@stdlib/stats/base/dstdevtk]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass textbook algorithm.</span>
- <span class="signature">[`dstdevwd( N, correction, x, strideX )`][@stdlib/stats/base/dstdevwd]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using Welford's algorithm.</span>
- <span class="signature">[`dstdevyc( N, correction, x, strideX )`][@stdlib/stats/base/dstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a double-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
- <span class="signature">[`dsvariance( N, correction, x, stride )`][@stdlib/stats/base/dsvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dsvariancepn( N, correction, x, stride )`][@stdlib/stats/base/dsvariancepn]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a two-pass algorithm with extended accumulation and returning an extended precision result.</span>
- <span class="signature">[`dvariance( N, correction, x, stride )`][@stdlib/stats/base/dvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array.</span>
Expand Down
Loading