Skip to content

supabase/vecs

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Files

Permalink
Failed to load latest commit information.

vecs

Python version PyPI version License Download count


Documentation: https://supabase.github.io/vecs/api/

Source Code: https://github.com/supabase/vecs


vecs is a python client for managing and querying vector stores in PostgreSQL with the pgvector extension. This guide will help you get started with using vecs.

If you don't have a Postgres database with the pgvector ready, see hosting for easy options.

Installation

Requires:

  • Python 3.7+

You can install vecs using pip:

pip install vecs

Usage

Visit the quickstart guide for more complete info.

import vecs

DB_CONNECTION = "postgresql://<user>:<password>@<host>:<port>/<db_name>"

# create vector store client
vx = vecs.create_client(DB_CONNECTION)

# create a collection of vectors with 3 dimensions
docs = vx.create_collection(name="docs", dimension=3)

# add records to the *docs* collection
docs.upsert(
    vectors=[
        (
         "vec0",           # the vector's identifier
         [0.1, 0.2, 0.3],  # the vector. list or np.array
         {"year": 1973}    # associated  metadata
        ),
        (
         "vec1",
         [0.7, 0.8, 0.9],
         {"year": 2012}
        )
    ]
)

# index the collection for fast search performance
docs.create_index()

# query the collection filtering metadata for "year" = 2012
docs.query(
    query_vector=[0.4,0.5,0.6],      # required
    limit=1,                         # number of records to return
    filters={"year": {"$eq": 2012}}, # metadata filters
)

# Returns: ["vec1"]

Releases

No releases published

Packages

No packages published

Languages