Async Techniques and Examples in Python Course
Switch branches/tags
Nothing to show
Clone or download
Latest commit 3ce7e86 Oct 6, 2018
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
readme_resources Compress / optimize these images. Oct 3, 2018
src Fixes #5 Oct 5, 2018
transcripts Transcripts complete for async course. Sep 24, 2018
.gitignore Cython but still GIL bound threaded example. Sep 14, 2018
LICENSE Initial commit Aug 17, 2018
README.md Update the readme with details now that the course is out. Sep 28, 2018

README.md

Async Techniques and Examples in Python Course

Course Summary

Python's async and parallel programming support is highly underrated. In this course, you will learn the entire spectrum of Python's parallel APIs. We will start with covering the new and powerful async and await keywords along with the underpinning module: asyncio. Then we'll move on to Python's threads for parallelizing older operations and multiprocessing for CPU bound operations. We'll close out the course with a host of additional async topics such as async Flask, task coordination, thread safety, and C-based parallelism with Cython.

What's this course about and how is it different?

This is the definitive course on parallel programming in Python. It covers the tried and true foundational concepts such as threads and multiprocessing as well as the most modern async features based on Python 3.7+ with async and await.

In addition to the core concepts and APIs for concurrent programming, you will learn best practices and how to choose between the various APIs as well as how to use them together for the biggest advantage.

In this course, you will:

  • See how concurrency allows improved performance and scalability
  • Build async-capable code with the new async and await keywords
  • Add asynchrony to your app without additional threads or processes
  • Work with multiple threads to run I/O bound work in Python
  • Use locks and thread safety mechanisms to protect shared data
  • Recognize a dead-lock and see how to prevent them in Python threads
  • Take full advantage of multicore CPUs with multiprocessing
  • Unify the thread and process APIs with execution pools
  • Add massive speedups with Cython and Python threads
  • Create async view methods in Flask web apps
  • And lots more

Who is this course for?

Anyone who would like to write Python code that does more, scales better, and takes better advantage of modern, multicore CPUs. Whether you're a web developer or data scientists, you will find a host of techniques to do more faster.

The course is not a beginner Python course, so students with little to no Python language experience should take a foundational course first. We recommend our Python Jumpstart by Building 10 Apps as a prerequisite if needed.

Take the course today

Visit the course page and get started today.