Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 17 additions & 16 deletions official/resnet/resnet_run_loop.py
Original file line number Diff line number Diff line change
Expand Up @@ -401,28 +401,29 @@ def resnet_main(flags, model_function, input_function, shape=None):
benchmark_logger = logger.config_benchmark_logger(flags.benchmark_log_dir)
benchmark_logger.log_run_info('resnet')

for _ in range(flags.train_epochs // flags.epochs_between_evals):
train_hooks = hooks_helper.get_train_hooks(
flags.hooks,
batch_size=flags.batch_size,
benchmark_log_dir=flags.benchmark_log_dir)
train_hooks = hooks_helper.get_train_hooks(
flags.hooks,
batch_size=flags.batch_size,
benchmark_log_dir=flags.benchmark_log_dir)

print('Starting a training cycle.')
def input_fn_train():
return input_function(True, flags.data_dir, flags.batch_size,
flags.epochs_between_evals,
flags.num_parallel_calls, flags.multi_gpu)

def input_fn_train():
return input_function(True, flags.data_dir, flags.batch_size,
flags.epochs_between_evals,
flags.num_parallel_calls, flags.multi_gpu)
def input_fn_eval():
return input_function(False, flags.data_dir, flags.batch_size,
1, flags.num_parallel_calls, flags.multi_gpu)

total_training_cycle = flags.train_epochs // flags.epochs_between_evals
for cycle_index in range(total_training_cycle):
tf.logging.info('Starting a training cycle: %d/%d',
cycle_index, total_training_cycle)

classifier.train(input_fn=input_fn_train, hooks=train_hooks,
max_steps=flags.max_train_steps)

print('Starting to evaluate.')
# Evaluate the model and print results
def input_fn_eval():
return input_function(False, flags.data_dir, flags.batch_size,
1, flags.num_parallel_calls, flags.multi_gpu)

tf.logging.info('Starting to evaluate.')
# flags.max_train_steps is generally associated with testing and profiling.
# As a result it is frequently called with synthetic data, which will
# iterate forever. Passing steps=flags.max_train_steps allows the eval
Expand Down