Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion research/delf/delf/python/pooling_layers/pooling.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ def gem(x, axis=None, power=3., eps=1e-6):
axis: Dimensions to reduce. By default, dimensions [1, 2] are reduced.
power: Float, power > 0 is an inverse exponent parameter (GeM power).
eps: Float, parameter for numerical stability.

Returns:
output: [B, D] A float32 Tensor.
"""
Expand Down
236 changes: 236 additions & 0 deletions research/delf/delf/python/training/global_features_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,236 @@
# Copyright 2021 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for the global model training."""

import os

from absl import logging

import numpy as np
from tensorboard import program
import tensorflow as tf

from delf.python.datasets.revisited_op import dataset


class AverageMeter():
"""Computes and stores the average and current value of loss."""

def __init__(self):
"""Initialization of the AverageMeter."""
self.reset()

def reset(self):
"""Resets all the values."""
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0

def update(self, val, n=1):
"""Updates values in the AverageMeter.

Args:
val: Float, loss value.
n: Integer, number of instances.
"""
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count


def compute_metrics_and_print(dataset_name, sorted_index_ids, ground_truth,
desired_pr_ranks=None, log=True):
"""Computes and logs ground-truth metrics for Revisited datasets.

Args:
dataset_name: String, name of the dataset.
sorted_index_ids: Integer NumPy array of shape [#queries, #index_images].
For each query, contains an array denoting the most relevant index images,
sorted from most to least relevant.
ground_truth: List containing ground-truth information for dataset. Each
entry is a dict corresponding to the ground-truth information for a query.
The dict has keys 'ok' and 'junk', mapping to a NumPy array of integers.
desired_pr_ranks: List of integers containing the desired precision/recall
ranks to be reported. E.g., if precision@1/recall@1 and
precision@10/recall@10 are desired, this should be set to [1, 10]. The
largest item should be <= #sorted_index_ids. Default: [1, 5, 10].

Returns:
mAP: (metricsE, metricsM, metricsH) Tuple of the metrics for different
levels of complexity. Each metrics is a list containing:
mean_average_precision (float), mean_precisions (NumPy array of
floats, with shape [len(desired_pr_ranks)]), mean_recalls (NumPy array
of floats, with shape [len(desired_pr_ranks)]), average_precisions
(NumPy array of floats, with shape [#queries]), precisions (NumPy array of
floats, with shape [#queries, len(desired_pr_ranks)]), recalls (NumPy
array of floats, with shape [#queries, len(desired_pr_ranks)]).

Raises:
ValueError: If an unknown dataset name is provided as an argument.
"""
_DATASETS = ['roxford5k', 'rparis6k']
if dataset not in _DATASETS:
raise ValueError('Unknown dataset: {}!'.format(dataset))

if desired_pr_ranks is None:
desired_pr_ranks = [1, 5, 10]

(easy_ground_truth, medium_ground_truth,
hard_ground_truth) = dataset.ParseEasyMediumHardGroundTruth(ground_truth)

metrics_easy = dataset.ComputeMetrics(sorted_index_ids, easy_ground_truth,
desired_pr_ranks)
metrics_medium = dataset.ComputeMetrics(sorted_index_ids,
medium_ground_truth,
desired_pr_ranks)
metrics_hard = dataset.ComputeMetrics(sorted_index_ids, hard_ground_truth,
desired_pr_ranks)

debug_and_log(
'>> {}: mAP E: {}, M: {}, H: {}'.format(
dataset_name, np.around(metrics_easy[0] * 100, decimals=2),
np.around(metrics_medium[0] * 100, decimals=2),
np.around(metrics_hard[0] * 100, decimals=2)), log=log)

debug_and_log(
'>> {}: mP@k{} E: {}, M: {}, H: {}'.format(
dataset_name, desired_pr_ranks,
np.around(metrics_easy[1] * 100, decimals=2),
np.around(metrics_medium[1] * 100, decimals=2),
np.around(metrics_hard[1] * 100, decimals=2)), log=log)

return metrics_easy, metrics_medium, metrics_hard


def htime(time_difference):
"""Time formatting function.

Depending on the value of `time_difference` outputs time in an appropriate
time format.

Args:
time_difference: Float, time difference between the two events.

Returns:
time: String representing time in an appropriate time format.
"""
time_difference = round(time_difference)

days = time_difference // 86400
hours = time_difference // 3600 % 24
minutes = time_difference // 60 % 60
seconds = time_difference % 60

if days > 0:
return '{:d}d {:d}h {:d}m {:d}s'.format(days, hours, minutes, seconds)
if hours > 0:
return '{:d}h {:d}m {:d}s'.format(hours, minutes, seconds)
if minutes > 0:
return '{:d}m {:d}s'.format(minutes, seconds)
return '{:d}s'.format(seconds)


def debug_and_log(msg, debug=True, log=True, debug_on_the_same_line=False):
"""Outputs `msg` to both stdout (if in the debug mode) and the log file.

Args:
msg: String, message to be logged.
debug: Bool, if True, will print `msg` to stdout.
log: Bool, if True, will redirect `msg` to the logfile.
debug_on_the_same_line: Bool, if True, will print `msg` to stdout without
a new line. When using this mode, logging to a logfile is disabled.
"""
if debug_on_the_same_line:
print(msg, end='')
return
if debug:
print(msg)
if log:
logging.info(msg)


def launch_tensorboard(log_dir):
"""Runs tensorboard with the given `log_dir`.

Args:
log_dir: String, directory to start tensorboard in.
"""
tb = program.TensorBoard()
tb.configure(argv=[None, '--logdir', log_dir])
url = tb.launch()
debug_and_log("Launching Tensorboard: {}".format(url))


def get_standard_keras_models():
"""Gets the standard keras model names.

Returns:
model_names: List, names of the standard keras models.
"""
model_names = sorted(name for name in tf.keras.applications.__dict__
if not name.startswith("__")
and callable(tf.keras.applications.__dict__[name]))
return model_names


def create_model_directory(training_dataset, arch, pool, whitening,
pretrained, loss, loss_margin, optimizer, lr,
weight_decay, neg_num, query_size, pool_size,
batch_size, update_every, image_size, directory):
"""Based on the model parameters, creates the model directory.

If the model directory does not exist, the directory is created.

Args:
training_dataset: String, training dataset name.
arch: String, model architecture.
pool: String, pooling option.
whitening: Bool, whether the model is trained with global whitening.
pretrained: Bool, whether the model is initialized with the precomputed
weights.
loss: String, training loss type.
loss_margin: Float, loss margin.
optimizer: Sting, used optimizer.
lr: Float, initial learning rate.
weight_decay: Float, weight decay.
neg_num: Integer, Number of negative images per train/val tuple.
query_size: Integer, number of queries per one training epoch.
pool_size: Integer, size of the pool for hard negative mining.
batch_size: Integer, batch size.
update_every: Integer, frequency of the model weights update.
image_size: Integer, maximum size of longer image side used for training.
directory: String, destination where trained network should be saved.

Returns:
folder: String, path to the model folder.
"""
folder = '{}_{}_{}'.format(training_dataset, arch, pool)
if whitening:
folder += '_whiten'
if not pretrained:
folder += '_notpretrained'
folder += ('_{}_m{:.2f}_{}_lr{:.1e}_wd{:.1e}_nnum{}_qsize{}_psize{}_bsize{}'
'_uevery{}_imsize{}').format(
loss, loss_margin, optimizer, lr, weight_decay, neg_num,
query_size, pool_size, batch_size, update_every, image_size)

folder = os.path.join(directory, folder)
debug_and_log(
'>> Creating directory if does not exist:\n>> \'{}\''.format(folder))
if not os.path.exists(folder):
os.makedirs(folder)
return folder
121 changes: 121 additions & 0 deletions research/delf/delf/python/whiten.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
# Copyright 2021 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Whitening learning functions."""

import os

import numpy as np


def apply_whitening(descriptors, mean_descriptor_vector, projection,
output_dim=None):
"""Applies the whitening to the descriptors as a post-processing step.

Args:
descriptors: [N, D] NumPy array of L2-normalized descriptors to be
post-processed.
mean_descriptor_vector: Mean descriptor vector.
projection: Whitening projection matrix.
output_dim: Integer, parameter for the dimensionality reduction. If
`output_dim` is None, the dimensionality reduction is not performed.

Returns:
descriptors_whitened: [N, output_dim] NumPy array of L2-normalized
descriptors `descriptors` after whitening application.
"""
eps = 1e-6
if output_dim is None:
output_dim = projection.shape[0]

descriptors = np.dot(projection[:output_dim, :],
descriptors - mean_descriptor_vector)
descriptors_whitened = descriptors / (
np.linalg.norm(descriptors, ord=2, axis=0, keepdims=True) + eps)
return descriptors_whitened


def learn_whitening(descriptors, qidxs, pidxs):
"""Learning the post-processing of fine-tuned descriptor vectors.

This method of whitening learning leverages the provided labeled data and
uses linear discriminant projections. The projection is decomposed into two
parts: whitening and rotation. The whitening part is the inverse of the
square-root of the intraclass (matching pairs) covariance matrix. The
rotation part is the PCA of the interclass (non-matching pairs) covariance
matrix in the whitened space. The described approach acts as a
post-processing step, equivalently, once the fine-tuning of the CNN is
finished. For more information about the method refer to the section 3.4
of https://arxiv.org/pdf/1711.02512.pdf.

Args:
descriptors: [N, D] NumPy array of L2-normalized descriptors.
qidxs: List of query indexes.
pidxs: List of positive pairs indexes.

Returns:
mean_descriptor_vector: [N, 1] NumPy array, mean descriptor vector.
projection: [N, N] NumPy array, whitening projection matrix.
"""
# Calculating the mean descriptor vector, which is used to perform centering.
mean_descriptor_vector = descriptors[:, qidxs].mean(axis=1, keepdims=True)
# Interclass (matching pairs) difference.
interclass_difference = descriptors[:, qidxs] - descriptors[:, pidxs]
covariance_matrix = (np.dot(interclass_difference, interclass_difference.T) /
interclass_difference.shape[1])

# Whitening part.
projection = np.linalg.inv(cholesky(covariance_matrix))

projected_X = np.dot(projection, descriptors - mean_descriptor_vector)
non_matching_covariance_matrix = np.dot(projected_X, projected_X.T)
eigval, eigvec = np.linalg.eig(non_matching_covariance_matrix)
order = eigval.argsort()[::-1]
eigvec = eigvec[:, order]

# Rotational part.
projection = np.dot(eigvec.T, projection)
return mean_descriptor_vector, projection


def cholesky(matrix):
"""Cholesky decomposition.

Cholesky decomposition suitable for non-positive definite matrices: involves
adding a small value `alpha` on the matrix diagonal until the matrix
becomes positive definite.

Args:
matrix: [K, K] Square matrix to be decomposed.

Returns:
decomposition: [K, K] Upper-triangular Cholesky factor of `matrix`,
a matrix with real and positive diagonal entries.
"""
alpha = 0
while True:
try:
# If the input parameter matrix is not positive-definite,
# the decomposition fails and we iteratively add a small value `alpha` on
# the matrix diagonal.
decomposition = np.linalg.cholesky(matrix + alpha * np.eye(*matrix.shape))
return decomposition
except np.linalg.LinAlgError:
if alpha == 0:
alpha = 1e-10
else:
alpha *= 10
print(
">>>> {}::cholesky: Matrix is not positive definite, adding {:.0e} "
"on the diagonal".format(os.path.basename(__file__), alpha))
Loading