Closed
Description
DOESN'T WORK:
from tensorflow.python.keras.layers import Input, Dense
from tensorflow.python.keras.models import Model
from tensorflow.python.keras.optimizers import Nadam
ipt = Input(shape=(4,))
out = Dense(1, activation='sigmoid')(ipt)
model = Model(ipt, out)
model.compile(optimizer=Nadam(lr=1e-4), loss='binary_crossentropy')
X = np.random.randn(32,4)
Y = np.random.randint(0,2,(32,1))
model.train_on_batch(X,Y)
WORKS: remove .python
from above's imports. Above's error trace below.
Keras 2.3.0 and TensorFlow 2.0.0 freshly-installed via Anaconda, older versions uninstalled. Why the difference?
File "<ipython-input-7-1e86d21d8fc4>", line 13, in <module>
model.train_on_batch(X,Y)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 1017, in train_on_batch
self._make_train_function()
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2116, in _make_train_function
params=self._collected_trainable_weights, loss=self.total_loss)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 653, in get_updates
grads = self.get_gradients(loss, params)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\keras\optimizers.py", line 92, in get_gradients
if None in grads:
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\math_ops.py", line 1336, in tensor_equals
return gen_math_ops.equal(self, other)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py", line 3627, in equal
name=name)
File "D:\Anaconda\envs\tf2_env\lib\site-packages\tensorflow_core\python\framework\op_def_library.py", line 545, in _apply_op_helper
(input_name, err))
ValueError: Tried to convert 'y' to a tensor and failed. Error: None values not supported.
UPDATE: Debugging the two side-by-side, while both use the same files, execution diverges fairly quickly:
# .\tensorflow_core\python\keras\engine\training.py
### TF.KERAS
if self._experimental_run_tf_function: # TRUE
### TF.PYTHON.KERAS
if self._experimental_run_tf_function: # FALSE
Former proceeds to call training_v2_utils.train_on_batch(...)
and returns thereafter, latter self._standardize_user_data(...)
and others before ultimately failing.
One difference I noted between linked file and mine is, latter's short by ~100 lines - though I installed TF 2 via pip after the file's last update 12 days ago according to Github.