|
| 1 | +import { describe, expect, it } from 'vitest' |
| 2 | + |
| 3 | +import { absoluteDeviationMedian, Samples, type SortedSamples } from '../src/utils' |
| 4 | +import { toSortedSamples } from './utils' |
| 5 | + |
| 6 | +// Helper: calculate median of a sorted array |
| 7 | +const medianFn = (samples: SortedSamples): number => { |
| 8 | + const len = samples.length |
| 9 | + const mid = len >> 1 |
| 10 | + return len & 1 |
| 11 | + ? samples[mid]! // eslint-disable-line @typescript-eslint/no-non-null-assertion |
| 12 | + : (samples[mid - 1]! + samples[mid]!) / 2 // eslint-disable-line @typescript-eslint/no-non-null-assertion |
| 13 | +} |
| 14 | + |
| 15 | +// Reference implementation: median of absolute deviations |
| 16 | +const absoluteDeviationMedianTrivial = (samples: SortedSamples): number => { |
| 17 | + const median = medianFn(samples) |
| 18 | + const deviations = samples.map(v => Math.abs(v - median)) as Samples |
| 19 | + return medianFn(toSortedSamples(deviations)) |
| 20 | +} |
| 21 | + |
| 22 | +describe('absoluteDeviationMedian()', () => { |
| 23 | + it('Simple odd length', () => { |
| 24 | + const samples = toSortedSamples([1, 2, 3, 4, 5, 6, 7, 8, 9]) |
| 25 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 26 | + }) |
| 27 | + |
| 28 | + it('Simple even length', () => { |
| 29 | + const samples = toSortedSamples([1, 2, 3, 4, 5, 6, 7, 8]) |
| 30 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 31 | + }) |
| 32 | + |
| 33 | + it('With outliers', () => { |
| 34 | + const samples = toSortedSamples([1, 2, 3, 100, 200]) |
| 35 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 36 | + }) |
| 37 | + |
| 38 | + it('All same', () => { |
| 39 | + const samples = toSortedSamples([5, 5, 5, 5, 5]) |
| 40 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 41 | + }) |
| 42 | + |
| 43 | + it('Two elements', () => { |
| 44 | + const samples = toSortedSamples([1, 9]) |
| 45 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 46 | + }) |
| 47 | + |
| 48 | + it('Single element', () => { |
| 49 | + const samples = toSortedSamples([42]) |
| 50 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 51 | + }) |
| 52 | + |
| 53 | + it('Symmetric', () => { |
| 54 | + const samples = toSortedSamples([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) |
| 55 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 56 | + }) |
| 57 | + |
| 58 | + it('Large spread', () => { |
| 59 | + const samples = toSortedSamples([1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]) |
| 60 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 61 | + }) |
| 62 | + |
| 63 | + it('Duplicates at start', () => { |
| 64 | + const samples = toSortedSamples([1, 1, 1, 5, 10, 15, 20]) |
| 65 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 66 | + }) |
| 67 | + |
| 68 | + it('Duplicates at end', () => { |
| 69 | + const samples = toSortedSamples([1, 5, 10, 15, 20, 20, 20]) |
| 70 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 71 | + }) |
| 72 | + |
| 73 | + it('Duplicates around median', () => { |
| 74 | + const samples = toSortedSamples([1, 2, 5, 5, 5, 8, 9]) |
| 75 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 76 | + }) |
| 77 | + |
| 78 | + it('Many duplicates', () => { |
| 79 | + const samples = toSortedSamples([1, 2, 2, 3, 3, 3, 4, 4, 5]) |
| 80 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 81 | + }) |
| 82 | + |
| 83 | + it('Alternating duplicates', () => { |
| 84 | + const samples = toSortedSamples([1, 1, 2, 2, 3, 3, 4, 4, 5, 5]) |
| 85 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 86 | + }) |
| 87 | + |
| 88 | + it('Almost all same with outlier', () => { |
| 89 | + const samples = toSortedSamples([5, 5, 5, 5, 5, 5, 5, 100]) |
| 90 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 91 | + }) |
| 92 | + |
| 93 | + it('Two values repeated', () => { |
| 94 | + const samples = toSortedSamples([1, 1, 1, 1, 9, 9, 9, 9]) |
| 95 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 96 | + }) |
| 97 | + |
| 98 | + it('Complex duplicates', () => { |
| 99 | + const samples = toSortedSamples([1, 1, 2, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6, 7]) |
| 100 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe(absoluteDeviationMedianTrivial(samples)) |
| 101 | + }) |
| 102 | + |
| 103 | + it('fuzzing test', () => { |
| 104 | + const rounds = 1000 |
| 105 | + const len = 10 |
| 106 | + |
| 107 | + for (let j = 0; j < rounds; ++j) { |
| 108 | + const samplesArray: Samples = new Array(len) as unknown as Samples |
| 109 | + for (let i = 0; i < len; i++) { |
| 110 | + samplesArray[i] = (Math.random() * 10) |
| 111 | + } |
| 112 | + |
| 113 | + const samples = toSortedSamples(samplesArray) |
| 114 | + expect(absoluteDeviationMedian(samples, medianFn(samples))).toBe( |
| 115 | + absoluteDeviationMedianTrivial(samples) |
| 116 | + ) |
| 117 | + } |
| 118 | + }) |
| 119 | +}) |
0 commit comments