索引 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
---|---|---|---|---|---|---|---|---|---|---|
U1 | -Q- | -W- | -E- | -R- | -T- | -Y- | -U- | -I- | -O- | -P- |
U2 | -A- | -S- | -D- | -F- | -G- | -H- | -J- | -K- | -L- | |
U3 | -Z- | -X- | -C- | -V- | -B- | -N- | -M- |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Activation Function | 激活函数 | [1] / [2] |
Accumulated error backpropagation | 累积误差逆传播 | [1] |
Adaptive Resonance Theory/ART | 自适应谐振理论 | [1] |
Addictive model | 加性学习 | [1] |
Adversarial Networks | 对抗网络 | [1] |
Affine Layer | 仿射层 | [1] |
Affinity matrix | 亲和矩阵 | [1] |
Agent | 智能体 | [1] / [2] / [3] / [4] |
Algorithm | 算法 | [1] / [2] / [3] |
Alpha-beta pruning | α-β剪枝 | [1] |
Anomaly detection | 异常检测 | [1] |
Approximation | 近似 | [1] |
Area Under ROC Curve/AUC | Roc 曲线下面积 | [1] |
Artificial General Intelligence/AGI | 通用人工智能 | [1] |
Artificial Intelligence/AI | 人工智能 | [1] / [2] / [3] |
Association analysis | 关联分析 | [1] |
Attention mechanism | 注意力机制 | [1] / [2] / [3] |
Attribute conditional independence assumption | 属性条件独立性假设 | [1] |
Attribute space | 属性空间 | [1] |
Attribute value | 属性值 | [1] |
Autoencoder | 自编码器 | [1] |
Automatic speech recognition/ASR | 自动语音识别 | [1] |
Automatic summarization | 自动摘要 | [1] |
Average gradient | 平均梯度 | [1] |
Average-Pooling | 平均池化 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Backpropagation/BP | 反向传播 | [1] |
Backpropagation Through Time | 通过时间的反向传播 | [1] |
Base learner | 基学习器 | [1] |
Base learning algorithm | 基学习算法 | [1] |
Batch Normalization/BN | 批量归一化 | [1] |
Bayes decision rule | 贝叶斯判定准则 | [1] |
Bayes Model Averaging/BMA | 贝叶斯模型平均 | [1] |
Bayes optimal classifier | 贝叶斯最优分类器 | [1] |
Bayesian decision theory | 贝叶斯决策论 | [1] |
Bayes decision rule | 贝叶斯判定准则 | [1] |
Bayes Model Averaging/BMA | 贝叶斯模型平均 | [1] |
Bayes optimal classifier | 贝叶斯最优分类器 | [1] |
Bayesian decision theory | 贝叶斯决策论 | [1] |
Bayesian network | 贝叶斯网络 | [1] |
Between-class scatter matrix | 类间散度矩阵 | [1] |
Bias | 偏置 / 偏差 | [1] |
Bias-variance decomposition | 偏差-方差分解 | [1] |
Bias-Variance Dilemma | 偏差 - 方差困境 | [1] |
Bi-directional Long-Short Term Memory/Bi-LSTM | 双向长短期记忆 | [1] |
Binary classification | 二分类 | [1] |
Binomial test | 二项检验 | [1] |
Bi-partition | 二分法 | [1] |
Boltzmann machine | 玻尔兹曼机 | [1] |
Bootstrap sampling | 自助采样法/可重复采样/有放回采样 | [1] |
Bootstrapping | 自助法 | [1] |
Break-Event Point/BEP | 平衡点 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Calibration | 校准 | [1] |
Cascade-Correlation | 级联相关 | [1] |
Categorical attribute | 离散属性 | [1] |
Class-conditional probability | 类条件概率 | [1] |
Classification and regression tree/CART | 分类与回归树 | [1] |
Classifier | 分类器 | [1] |
Class-imbalance | 类别不平衡 | [1] |
Closed-form | 闭式 | [1] |
Cluster | 簇/类/集群 | [1] |
Cluster analysis | 聚类分析 | [1] |
Clustering | 聚类 | [1] |
Clustering ensemble | 聚类集成 | [1] |
Co-adapting | 共适应 | [1] |
Coding matrix | 编码矩阵 | [1] |
COLT | 国际学习理论会议 | [1] |
Committee-based learning | 基于委员会的学习 | [1] |
Competitive learning | 竞争型学习 | [1] |
Component learner | 组件学习器 | [1] |
Comprehensibility | 可解释性 | [1] |
Computation Cost | 计算成本 | [1] |
Computational Linguistics | 计算语言学 | [1] |
Computer vision | 计算机视觉 | [1] |
Concept drift | 概念漂移 | [1] |
Concept Learning System /CLS | 概念学习系统 | [1] |
Conditional entropy | 条件熵 | [1] |
Conditional mutual information | 条件互信息 | [1] |
Conditional Probability Table/CPT | 条件概率表 | [1] |
Conditional random field/CRF | 条件随机场 | [1] |
Conditional risk | 条件风险 | [1] |
Confidence | 置信度 | [1] |
Confusion matrix | 混淆矩阵 | [1] |
Connection weight | 连接权 | [1] |
Connectionism | 连结主义 | [1] |
Consistency | 一致性/相合性 | [1] |
Contingency table | 列联表 | [1] |
Continuous attribute | 连续属性 | [1] |
Convergence | 收敛 | [1] |
Conversational agent | 会话智能体 | [1] |
Convex quadratic programming | 凸二次规划 | [1] |
Convexity | 凸性 | [1] |
Convolutional neural network/CNN | 卷积神经网络 | [1] |
Co-occurrence | 同现 | [1] |
Correlation coefficient | 相关系数 | [1] |
Cosine similarity | 余弦相似度 | [1] |
Cost curve | 成本曲线 | [1] |
Cost Function | 成本函数 | [1] |
Cost matrix | 成本矩阵 | [1] |
Cost-sensitive | 成本敏感 | [1] |
Cross entropy | 交叉熵 | [1] |
Cross validation | 交叉验证 | [1] |
Crowdsourcing | 众包 | [1] |
Curse of dimensionality | 维度灾难 | [1] |
Cut point | 截断点 | [1] |
Cutting plane algorithm | 割平面法 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Data mining | 数据挖掘 | [1] |
Data set | 数据集 | [1] |
Decision Boundary | 决策边界 | [1] |
Decision stump | 决策树桩 | [1] |
Decision tree | 决策树/判定树 | [1] |
Deduction | 演绎 | [1] |
Deep Belief Network | 深度信念网络 | [1] |
Deep Convolutional Generative Adversarial Network/DCGAN | 深度卷积生成对抗网络 | [1] |
Deep learning | 深度学习 | [1] |
Deep neural network/DNN | 深度神经网络 | [1] |
Deep Q-Learning | 深度 Q 学习 | [1] |
Deep Q-Network | 深度 Q 网络 | [1] |
Density estimation | 密度估计 | [1] |
Density-based clustering | 密度聚类 | [1] |
Differentiable neural computer | 可微分神经计算机 | [1] |
Dimensionality reduction algorithm | 降维算法 | [1] |
Directed edge | 有向边 | [1] |
Disagreement measure | 不合度量 | [1] |
Discriminative model | 判别模型 | [1] |
Discriminator | 判别器 | [1] |
Distance measure | 距离度量 | [1] |
Distance metric learning | 距离度量学习 | [1] |
distance metric learning | 距离度量学习 | [1] |
Distribution | 分布 | [1] |
Divergence | 散度 | [1] |
Diversity measure | 多样性度量/差异性度量 | [1] |
Domain adaption | 领域自适应 | [1] |
Downsampling | 下采样 | [1] |
D-separation /Directed separation | 有向分离 | [1] |
Dual problem | 对偶问题 | [1] |
Dummy node | 哑结点 | [1] |
Dynamic Fusion | 动态融合 | [1] |
Dynamic programming | 动态规划 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Eigenvalue decomposition | 特征值分解 | [1] |
Embedding | 嵌入 | [1] |
Emotional analysis | 情绪分析 | [1] |
Empirical conditional entropy | 经验条件熵 | [1] |
Empirical entropy | 经验熵 | [1] |
Empirical error | 经验误差 | [1] |
Empirical risk | 经验风险 | [1] |
End-to-End | 端到端 | [1] |
Energy-based model | 基于能量的模型 | [1] |
Ensemble learning | 集成学习 | [1] |
Ensemble pruning | 集成修剪 | [1] |
Error Correcting Output Codes/ECOC | 纠错输出码 | [1] |
Error rate | 错误率 | [1] |
Error-ambiguity decomposition | 误差-分歧分解 | [1] |
Euclidean distance | 欧氏距离 | [1] |
Evolutionary computation | 演化计算 | [1] |
Expectation-Maximization/EM | 期望最大化 | [1] |
Expected loss | 期望损失 | [1] |
Exploding Gradient Problem | 梯度爆炸问题 | [1] |
Exponential loss function | 指数损失函数 | [1] |
Extreme Learning Machine/ELM | 超限学习机 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Factorization | 因子分解 | [1] |
False negative | 假负类 | [1] |
False positive | 假正类 | [1] |
False Positive Rate/FPR | 假正例率 | [1] |
Feature engineering | 特征工程 | [1] |
Feature selection | 特征选择 | [1] |
Feature vector | 特征向量 | [1] |
Featured Learning | 特征学习 | [1] |
Feedforward Neural Networks/FNN | 前馈神经网络 | [1] |
Fine-tuning | 微调 | [1] |
Flipping output | 翻转法 | [1] |
Fluctuation | 震荡 | [1] |
Forward stagewise algorithm | 前向分步算法 | [1] |
Frequentist | 频率主义学派 | [1] |
Full-rank matrix | 满秩矩阵 | [1] |
Functional neuron | 功能神经元 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Gain ratio | 增益率 | [1] |
Game theory | 博弈论 | [1] |
Gaussian kernel function | 高斯核函数 | [1] |
Gaussian Mixture Model | 高斯混合模型 | [1] |
General Problem Solving | 通用问题求解 | [1] |
Generalization | 泛化 | [1] |
Generalization error | 泛化误差 | [1] |
Generalization error bound | 泛化误差上界 | [1] |
Generalized Lagrange function | 广义拉格朗日函数 | [1] |
Generalized linear model | 广义线性模型 | [1] |
Generalized Rayleigh quotient | 广义瑞利商 | [1] |
Generative Adversarial Networks/GAN | 生成对抗网络 | [1] |
Generative Model | 生成模型 | [1] |
Generator | 生成器 | [1] |
Genetic Algorithm/GA | 遗传算法 | [1] |
Gibbs sampling | 吉布斯采样 | [1] |
Gini index | 基尼指数 | [1] |
Global minimum | 全局最小 | [1] |
Global Optimization | 全局优化 | [1] |
Gradient boosting tree | 梯度提升树 | [1] |
Gradient Descent | 梯度下降 | [1] |
Graph theory | 图论 | [1] |
Ground-truth | 真相/真实 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Hard margin | 硬间隔 | [1] |
Hard voting | 硬投票 | [1] |
Harmonic mean | 调和平均 | [1] |
Hesse matrix | 海赛矩阵 | [1] |
Hidden dynamic model | 隐动态模型 | [1] |
Hidden layer | 隐藏层 | [1] |
Hidden Markov Model/HMM | 隐马尔可夫模型 | [1] |
Hierarchical clustering | 层次聚类 | [1] |
Hilbert space | 希尔伯特空间 | [1] |
Hinge loss function | 合页损失函数 | [1] |
Hold-out | 留出法 | [1] |
Homogeneous | 同质 | [1] |
Hybrid computing | 混合计算 | [1] |
Hyperparameter | 超参数 | [1] |
Hypothesis | 假设 | [1] |
Hypothesis test | 假设检验 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
ICML | 国际机器学习会议 | [1] |
Improved iterative scaling/IIS | 改进的迭代尺度法 | [1] |
Incremental learning | 增量学习 | [1] |
Independent and identically distributed/i.i.d. | 独立同分布 | [1] |
Independent Component Analysis/ICA | 独立成分分析 | [1] |
Indicator function | 指示函数 | [1] |
Individual learner | 个体学习器 | [1] |
Induction | 归纳 | [1] |
Inductive bias | 归纳偏好 | [1] |
Inductive learning | 归纳学习 | [1] |
Inductive Logic Programming/ILP | 归纳逻辑程序设计 | [1] |
Information entropy | 信息熵 | [1] |
Information gain | 信息增益 | [1] |
Input layer | 输入层 | [1] |
Insensitive loss | 不敏感损失 | [1] |
Inter-cluster similarity | 簇间相似度 | [1] |
International Conference for Machine Learning/ICML | 国际机器学习大会 | [1] |
Intra-cluster similarity | 簇内相似度 | [1] |
Intrinsic value | 固有值 | [1] |
Isometric Mapping/Isomap | 等度量映射 | [1] |
Isotonic regression | 等分回归 | [1] |
Iterative Dichotomiser | 迭代二分器 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Jensen-Shannon Divergence/JSD | JS 散度 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Kernel method | 核方法 | [1] |
Kernel trick | 核技巧 | [1] |
Kernelized Linear Discriminant Analysis/KLDA | 核线性判别分析 | [1] |
K-fold cross validation | k 折交叉验证/k 倍交叉验证 | [1] |
K-Means Clustering | K - 均值聚类 | [1] |
K-Nearest Neighbours Algorithm/KNN | K近邻算法 | [1] |
Knowledge base | 知识库 | [1] |
Knowledge Representation | 知识表征 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Label space | 标记空间 | [1] |
Lagrange duality | 拉格朗日对偶性 | [1] |
Lagrange multiplier | 拉格朗日乘子 | [1] |
Laplace smoothing | 拉普拉斯平滑 | [1] |
Laplacian correction | 拉普拉斯修正 | [1] |
Latent Dirichlet Allocation | 隐狄利克雷分布 | [1] |
Latent semantic analysis | 潜在语义分析 | [1] |
Latent variable | 隐变量 | [1] |
Lazy learning | 懒惰学习 | [1] |
Learner | 学习器 | [1] |
Learning by analogy | 类比学习 | [1] |
Learning rate | 学习率 | [1] |
Learning Vector Quantization/LVQ | 学习向量量化 | [1] |
Least squares regression tree | 最小二乘回归树 | [1] |
Leave-One-Out/LOO | 留一法 | [1] |
Linear Discriminant Analysis/LDA | 线性判别 | [1] |
Linear model | 线性模型 | [1] |
Linear Regression | 线性回归 | [1] |
Link function | 联系函数 | [1] |
Local Markov property | 局部马尔可夫性 | [1] |
Local minimum | 局部最小 | [1] |
Log likelihood | 对数似然 | [1] |
Log odds/logit | 对数几率 | [1] |
Logistic Regression | Logistic 回归 | [1] |
Log-likelihood | 对数似然 | [1] |
Log-linear regression | 对数线性回归 | [1] |
Long-Short Term Memory/LSTM | 长短期记忆 | [1] |
Loss function | 损失函数 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Machine translation/MT | 机器翻译 | [1] |
Macron-P | 宏查准率 | [1] |
Macron-R | 宏查全率 | [1] |
Majority voting | 绝对多数投票法 | [1] |
Manifold assumption | 流形假设 | [1] |
Manifold learning | 流形学习 | [1] |
Margin theory | 间隔理论 | [1] |
Marginal distribution | 边际分布 | [1] |
Marginal independence | 边际独立性 | [1] |
Marginalization | 边际化 | [1] |
Markov Chain Monte Carlo/MCMC | 马尔可夫链蒙特卡罗方法 | [1] |
Markov Random Field | 马尔可夫随机场 | [1] |
Maximal clique | 最大团 | [1] |
Maximum Likelihood Estimation/MLE | 极大似然估计/极大似然法 | [1] |
Maximum margin | 最大间隔 | [1] |
Maximum weighted spanning tree | 最大带权生成树 | [1] |
Max-Pooling | 最大池化 | [1] |
Mean squared error | 均方误差 | [1] |
Meta-learner | 元学习器 | [1] |
Metric learning | 度量学习 | [1] |
Micro-P | 微查准率 | [1] |
Micro-R | 微查全率 | [1] |
Minimal Description Length/MDL | 最小描述长度 | [1] |
Minimax game | 极小极大博弈 | [1] |
Misclassification cost | 误分类成本 | [1] |
Mixture of experts | 混合专家 | [1] |
Momentum | 动量 | [1] |
Moral graph | 道德图/端正图 | [1] |
Multi-class classification | 多分类 | [1] |
Multi-document summarization | 多文档摘要 | [1] |
Multi-layer feedforward neural networks | 多层前馈神经网络 | [1] |
Multilayer Perceptron/MLP | 多层感知器 | [1] |
Multimodal learning | 多模态学习 | [1] |
Multiple Dimensional Scaling | 多维缩放 | [1] |
Multiple linear regression | 多元线性回归 | [1] |
Multi-response Linear Regression /MLR | 多响应线性回归 | [1] |
Mutual information | 互信息 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Naive bayes | 朴素贝叶斯 | [1] |
Naive Bayes Classifier | 朴素贝叶斯分类器 | [1] |
Named entity recognition | 命名实体识别 | [1] |
Nash equilibrium | 纳什均衡 | [1] |
Natural language generation/NLG | 自然语言生成 | [1] |
Natural language processing | 自然语言处理 | [1] |
Negative class | 负类 | [1] |
Negative correlation | 负相关法 | [1] |
Negative Log Likelihood | 负对数似然 | [1] |
Neighbourhood Component Analysis/NCA | 近邻成分分析 | [1] |
Neural Machine Translation | 神经机器翻译 | [1] |
Neural Turing Machine | 神经图灵机 | [1] |
Newton method | 牛顿法 | [1] |
NIPS | 国际神经信息处理系统会议 | [1] |
No Free Lunch Theorem/NFL | 没有免费的午餐定理 | [1] |
Noise-contrastive estimation | 噪音对比估计 | [1] |
Nominal attribute | 列名属性 | [1] |
Non-convex optimization | 非凸优化 | [1] |
Nonlinear model | 非线性模型 | [1] |
Non-metric distance | 非度量距离 | [1] |
Non-negative matrix factorization | 非负矩阵分解 | [1] |
Non-ordinal attribute | 无序属性 | [1] |
Non-Saturating Game | 非饱和博弈 | [1] |
Norm | 范数 | [1] |
Normalization | 归一化 | [1] |
Nuclear norm | 核范数 | [1] |
Numerical attribute | 数值属性 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Objective function | 目标函数 | [1] |
Oblique decision tree | 斜决策树 | [1] |
Occam's razor | 奥卡姆剃刀 | [1] |
Odds | 几率 | [1] |
Off-Policy | 离策略 | [1] |
One shot learning | 一次性学习 | [1] |
One-Dependent Estimator/ODE | 独依赖估计 | [1] |
On-Policy | 在策略 | [1] |
Ordinal attribute | 有序属性 | [1] |
Out-of-bag estimate | 包外估计 | [1] |
Output layer | 输出层 | [1] |
Output smearing | 输出调制法 | [1] |
Overfitting | 过拟合/过配 | [1] |
Oversampling | 过采样 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Paired t-test | 成对 t 检验 | [1] |
Pairwise | 成对型 | [1] |
Pairwise Markov property | 成对马尔可夫性 | [1] |
Parameter | 参数 | [1] |
Parameter estimation | 参数估计 | [1] |
Parameter tuning | 调参 | [1] |
Parse tree | 解析树 | [1] |
Particle Swarm Optimization/PSO | 粒子群优化算法 | [1] |
Part-of-speech tagging | 词性标注 | [1] |
Perceptron | 感知机 | [1] |
Performance measure | 性能度量 | [1] |
Plug and Play Generative Network | 即插即用生成网络 | [1] |
Plurality voting | 相对多数投票法 | [1] |
Polarity detection | 极性检测 | [1] |
Polynomial kernel function | 多项式核函数 | [1] |
Pooling | 池化 | [1] |
Positive class | 正类 | [1] |
Positive definite matrix | 正定矩阵 | [1] |
Post-hoc test | 后续检验 | [1] |
Post-pruning | 后剪枝 | [1] |
potential function | 势函数 | [1] |
Precision | 查准率/准确率 | [1] |
Prepruning | 预剪枝 | [1] |
Principal component analysis/PCA | 主成分分析 | [1] |
Principle of multiple explanations | 多释原则 | [1] |
Prior | 先验 | [1] |
Probability Graphical Model | 概率图模型 | [1] |
Proximal Gradient Descent/PGD | 近端梯度下降 | [1] |
Pruning | 剪枝 | [1] |
Pseudo-label | 伪标记 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Quantized Neural Network/QNN | 量子化神经网络 | [1] |
Quantum computer | 量子计算机 | [1] |
Quantum Computing | 量子计算 | [1] |
Quasi Newton method | 拟牛顿法 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Radial Basis Function/RBF | 径向基函数 | [1] |
Random Forest Algorithm | 随机森林算法 | [1] |
Random walk | 随机漫步 | [1] |
Recall | 查全率/召回率 | [1] |
Receiver Operating Characteristic/ROC | 受试者工作特征 | [1] |
Rectified Linear Unit/ReLU | 线性修正单元 | [1] |
Recurrent Neural Network | 循环神经网络 | [1] |
Recursive neural network | 递归神经网络 | [1] |
Reference model | 参考模型 | [1] |
Regression | 回归 | [1] |
Regularization | 正则化 | [1] |
Reinforcement learning/RL | 强化学习 | [1] |
Representation learning | 表征学习 | [1] |
Representer theorem | 表示定理 | [1] |
Reproducing Kernel Hilbert Space /RKHS | 再生核希尔伯特空间 | [1] |
Re-sampling | 重采样法 | [1] |
Rescaling | 再缩放 | [1] |
Residual Mapping | 残差映射 | [1] |
Residual Network | 残差网络 | [1] |
Restricted Boltzmann Machine/RBM | 受限玻尔兹曼机 | [1] |
Restricted Isometry Property/RIP | 限定等距性 | [1] |
Re-weighting | 重赋权法 | [1] |
Robustness | 稳健性/鲁棒性 | [1] |
Root node | 根结点 | [1] |
Rule Engine | 规则引擎 | [1] |
Rule learning | 规则学习 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Saddle point | 鞍点 | [1] |
Sample space | 样本空间 | [1] |
Sampling | 采样 | [1] |
Score function | 评分函数 | [1] |
Self-Driving | 自动驾驶 | [1] |
Self-Organizing Map/SOM | 自组织映射 | [1] |
Semi-naive Bayes classifiers | 半朴素贝叶斯分类器 | [1] |
Semi-Supervised Learning | 半监督学习 | [1] |
semi-Supervised Support Vector Machine | 半监督支持向量机 | [1] |
Sentiment analysis | 情感分析 | [1] |
Separating hyperplane | 分离超平面 | [1] |
Sigmoid function | Sigmoid 函数 | [1] |
Similarity measure | 相似度度量 | [1] |
Simulated annealing | 模拟退火 | [1] |
Simultaneous localization and mapping | 同步定位与地图构建 | [1] |
Singular Value Decomposition | 奇异值分解 | [1] |
Slack variables | 松弛变量 | [1] |
Smoothing | 平滑 | [1] |
Soft margin | 软间隔 | [1] |
Soft margin maximization | 软间隔最大化 | [1] |
Soft voting | 软投票 | [1] |
Sparse representation | 稀疏表征 | [1] |
Sparsity | 稀疏性 | [1] |
Specialization | 特化 | [1] |
Spectral Clustering | 谱聚类 | [1] |
Speech Recognition | 语音识别 | [1] |
Splitting variable | 切分变量 | [1] |
Squashing function | 挤压函数 | [1] |
Stability-plasticity dilemma | 可塑性-稳定性困境 | [1] |
Statistical learning | 统计学习 | [1] |
Status feature function | 状态特征函 | [1] |
Stochastic gradient descent | 随机梯度下降 | [1] |
Stratified sampling | 分层采样 | [1] |
Structural risk | 结构风险 | [1] |
Structural risk minimization/SRM | 结构风险最小化 | [1] |
Subspace | 子空间 | [1] |
Supervised learning | 监督学习/有导师学习 | [1] |
support vector expansion | 支持向量展式 | [1] |
Support Vector Machine/SVM | 支持向量机 | [1] |
Surrogat loss | 替代损失 | [1] |
Surrogate function | 替代函数 | [1] |
Symbolic learning | 符号学习 | [1] |
Symbolism | 符号主义 | [1] |
Synset | 同义词集 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
T-Distribution Stochastic Neighbour Embedding/t-SNE | T - 分布随机近邻嵌入 | [1] |
Tensor | 张量 | [1] |
Tensor Processing Units/TPU | 张量处理单元 | [1] |
The least square method | 最小二乘法 | [1] |
Threshold | 阈值 | [1] |
Threshold logic unit | 阈值逻辑单元 | [1] |
Threshold-moving | 阈值移动 | [1] |
Time Step | 时间步骤 | [1] |
Tokenization | 标记化 | [1] |
Training error | 训练误差 | [1] |
Training instance | 训练示例/训练例 | [1] |
Transductive learning | 直推学习 | [1] |
Transfer learning | 迁移学习 | [1] |
Treebank | 树库 | [1] |
Tria-by-error | 试错法 | [1] |
True negative | 真负类 | [1] |
True positive | 真正类 | [1] |
True Positive Rate/TPR | 真正例率 | [1] |
Turing Machine | 图灵机 | [1] |
Twice-learning | 二次学习 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Underfitting | 欠拟合/欠配 | [1] |
Undersampling | 欠采样 | [1] |
Understandability | 可理解性 | [1] |
Unequal cost | 非均等代价 | [1] |
Unit-step function | 单位阶跃函数 | [1] |
Univariate decision tree | 单变量决策树 | [1] |
Unsupervised learning | 无监督学习/无导师学习 | [1] |
Unsupervised layer-wise training | 无监督逐层训练 | [1] |
Upsampling | 上采样 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Vanishing Gradient Problem | 梯度消失问题 | [1] |
Variational inference | 变分推断 | [1] |
VC Theory | VC维理论 | [1] |
Version space | 版本空间 | [1] |
Viterbi algorithm | 维特比算法 | [1] |
Von Neumann architecture | 冯 · 诺伊曼架构 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Weak learner | 弱学习器 | [1] |
Weight | 权重 | [1] |
Weight sharing | 权共享 | [1] |
Weighted voting | 加权投票法 | [1] |
Wasserstein GAN/WGAN | Wasserstein生成对抗网络 | [1] |
Within-class scatter matrix | 类内散度矩阵 | [1] |
Word embedding | 词嵌入 | [1] |
Word sense disambiguation | 词义消歧 | [1] |
英文/缩写 | 汉语 | 来源&扩展 |
---|---|---|
Zero-data learning | 零数据学习 | [1] |
Zero-shot learning | 零次学习 | [1] |