Skip to content

Commit 1f17c19

Browse files
feat(anomaly): add project dependencies and module structure for anomaly detection system
1 parent acc6e7a commit 1f17c19

File tree

6 files changed

+141
-15
lines changed

6 files changed

+141
-15
lines changed

README.md

Lines changed: 79 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,58 @@
1-
# template-python
1+
# Anomaly Detection Project
22

3-
A simple Python template repository using modern tooling with `uv` and `pyproject.toml`.
3+
A Python-based anomaly detection system using machine learning algorithms to identify
4+
outliers in CSV data. Built with modern tooling using `uv` and `pyproject.toml`.
45

56
## Overview
67

7-
This template provides a minimal starting point for Python projects using:
8+
This project implements multiple anomaly detection algorithms using scikit-learn
9+
and provides visualization tools for analyzing results. It uses:
810
- **uv**: Fast Python package manager and project manager
911
- **pyproject.toml**: Modern Python project configuration (PEP 518/621)
1012
- Python 3.13+
1113

14+
## Dependencies
15+
16+
This project uses the following libraries:
17+
18+
### Core ML and Data Processing
19+
20+
- **scikit-learn** (>=1.3.0)
21+
- **Purpose**: Provides machine learning algorithm implementations
22+
- **Key Functionality**:
23+
- Isolation Forest algorithm for anomaly detection
24+
- One-Class SVM for outlier detection
25+
- Model training, prediction, and evaluation utilities
26+
- **Version Constraint**: Requires 1.3.0+ for latest algorithm improvements
27+
28+
- **pandas** (>=2.0.0)
29+
- **Purpose**: CSV file handling and data manipulation
30+
- **Key Functionality**:
31+
- Efficient CSV file reading and writing
32+
- DataFrame operations for data preprocessing
33+
- Data cleaning, filtering, and transformation
34+
- Handling missing values and data validation
35+
- **Version Constraint**: Requires 2.0.0+ for improved performance and API consistency
36+
37+
- **numpy** (>=1.24.0)
38+
- **Purpose**: Numerical operations and array manipulations
39+
- **Key Functionality**:
40+
- Array operations for data processing
41+
- Mathematical computations
42+
- Required dependency for scikit-learn
43+
- **Version Constraint**: Requires 1.24.0+ for compatibility with scikit-learn
44+
45+
### Visualization
46+
47+
- **matplotlib** (>=3.7.0)
48+
- **Purpose**: Static visualization generation
49+
- **Key Functionality**:
50+
- Creating plots and charts for anomaly detection results
51+
- Scatter plots with anomaly highlighting
52+
- Time-series visualizations
53+
- Exporting visualizations to various formats (PNG, PDF, SVG)
54+
- **Version Constraint**: Requires 3.7.0+ for latest plotting features
55+
1256
## Prerequisites
1357

1458
Install `uv` if you haven't already:
@@ -28,7 +72,7 @@ For more installation options, see the [uv documentation](https://docs.astral.sh
2872

2973
## Setup
3074

31-
1. Clone or use this template:
75+
1. Clone or use this repository:
3276
```bash
3377
git clone <repository-url>
3478
cd template-python
@@ -39,24 +83,45 @@ For more installation options, see the [uv documentation](https://docs.astral.sh
3983
uv sync
4084
```
4185

42-
## Running the Template
86+
## Running the Project
4387

4488
Run the main script:
4589

4690
```bash
4791
uv run python main.py
4892
```
4993

50-
This will execute the simple example in `main.py` which prints a greeting.
94+
This will execute the anomaly detection pipeline defined in `main.py`.
5195

5296
## Project Structure
5397

5498
```
55-
template-python/
56-
├── .git/ # Git repository
57-
├── .gitignore # Python-specific ignore patterns
58-
├── .python-version # Pinned Python version (3.13)
59-
├── pyproject.toml # Project configuration and dependencies
60-
├── main.py # Main entry point
61-
└── README.md # This file
62-
```
99+
project_root/
100+
├── .git/ # Git repository
101+
├── .gitignore # Python-specific ignore patterns
102+
├── .python-version # Pinned Python version (3.13)
103+
├── pyproject.toml # Project configuration and dependencies
104+
├── uv.lock # Locked dependency versions
105+
├── main.py # Main entry point
106+
├── README.md # This file
107+
└── src/ # Source package
108+
├── __init__.py # Package initialization
109+
├── data_loader.py # CSV loading and preprocessing
110+
├── anomaly_detection.py # ML algorithm implementations
111+
└── visualization.py # Chart generation
112+
```
113+
114+
## Module Overview
115+
116+
### `src/data_loader.py`
117+
Handles CSV file loading and data preprocessing using pandas. Provides utilities
118+
for data validation, cleaning, feature extraction, and normalization.
119+
120+
### `src/anomaly_detection.py`
121+
Implements machine learning algorithms for anomaly detection:
122+
- **Isolation Forest**: Detects anomalies by isolating observations
123+
- **One-Class SVM**: Learns boundaries of normal data to identify outliers
124+
125+
### `src/visualization.py`
126+
Generates static visualizations using matplotlib for anomaly detection results,
127+
including scatter plots, time-series charts, and comparison visualizations.

pyproject.toml

Lines changed: 6 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,4 +4,9 @@ version = "0.1.0"
44
description = "Add your description here"
55
readme = "README.md"
66
requires-python = ">=3.13"
7-
dependencies = []
7+
dependencies = [
8+
"scikit-learn>=1.3.0",
9+
"pandas>=2.0.0",
10+
"matplotlib>=3.7.0",
11+
"numpy>=1.24.0",
12+
]

src/__init__.py

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
"""
2+
Anomaly Detection Package
3+
4+
This package provides tools for detecting anomalies in CSV data using
5+
machine learning algorithms. It includes modules for data loading,
6+
anomaly detection using various ML algorithms, and visualization of results.
7+
8+
Modules:
9+
- data_loader: CSV file loading and data preprocessing
10+
- anomaly_detection: Machine learning algorithm implementations
11+
- visualization: Chart generation for anomaly detection results
12+
"""
13+
14+
__version__ = "0.1.0"

src/anomaly_detection.py

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
"""
2+
Anomaly Detection Module
3+
4+
This module implements machine learning algorithms for anomaly detection using
5+
scikit-learn. It provides implementations of:
6+
- Isolation Forest: An ensemble method for detecting anomalies by isolating
7+
observations through random feature selection and splitting
8+
- One-Class SVM: A support vector machine algorithm that learns the boundary
9+
of normal data points and identifies outliers
10+
11+
The module provides a unified interface for training models, making predictions,
12+
and evaluating anomaly detection performance. It leverages numpy for numerical
13+
operations and scikit-learn's robust ML implementations.
14+
"""

src/data_loader.py

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
"""
2+
Data Loader Module
3+
4+
This module handles CSV file loading and data preprocessing for anomaly detection.
5+
It uses pandas for efficient data manipulation and provides utilities for:
6+
- Loading CSV files into pandas DataFrames
7+
- Data validation and cleaning
8+
- Feature extraction and preprocessing
9+
- Handling missing values and data normalization
10+
- Data transformation for ML algorithms
11+
12+
The module ensures data is properly formatted and ready for anomaly detection
13+
algorithms to consume.
14+
"""

src/visualization.py

Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
"""
2+
Visualization Module
3+
4+
This module handles the generation of static visualizations for anomaly detection
5+
results using matplotlib. It provides functionality for:
6+
- Plotting anomaly scores and detection results
7+
- Creating scatter plots with anomalies highlighted
8+
- Generating time-series visualizations with anomaly markers
9+
- Creating comparison charts for multiple detection algorithms
10+
- Saving visualizations to various file formats (PNG, PDF, SVG)
11+
12+
The module uses matplotlib to create clear, publication-ready charts that help
13+
users understand and interpret anomaly detection results.
14+
"""

0 commit comments

Comments
 (0)