学习计划表 -> SCHEDULE
Siggraph asia论文投稿
- Automatic annotation for image sequences and videos
- Visual-based Soft Drink Detection for Automatic Vending Machine
- Learning Intelligent Dialogs for Bounding Box Annotation
- “GrabCut” — Interactive Foreground Extraction using Iterated Graph Cuts
- 深度学习的核心:掌握训练数据的方法
- Fluid Annotation: A Human-Machine Collaboration Interface for Full Image Annotation
- Deep Interactive Object Selection
- Annotating Object Instances with a Polygon-RNN
- Regional Interactive Image Segmentation Networks
从这里看开去,这个代码比较全;
下面的这个文章比较全;
- Convolution Network及其变种(反卷积、扩展卷积、因果卷积、图卷积)
- Variational autoencoders
- Graph Convolutional Networks
- Spatial Transformer Networks
没事可以上去翻翻系列
-
FCN 上采样的解析 目前大部分用于语义分割网络的通病:容易丢失较小的目标……
转投vim+snippets;
强化学习
语义分割资源
-
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
-
Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs
-
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation
-
Large Kernel Matters — Improve Semantic Segmentation by Global Convolutional Network
-
Rethinking Atrous Convolution for Semantic Image Segmentation
本月有两周放假~
- 解决数据分布不均衡问题,Focal loss
- SqueezeSegV2
- SqueezeSeg
- 添加了2019年学习计划表,链接,为2020年初做长足准备,转行需要补太多知识了,要有准备有计划的进行;
- 开题PPT修改,格式注意点
- 计算机视觉四大基本任务(分类、定位、检测、分割)
- R-CNN、Fast/Faster/Mask R-CNN、FCN、RFCN 、SSD原理简析
- SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite
- Lidar-based Methods for Tracking and Identification
- 今日备忘
- 使用xmanager,在客户端也能看到服务器的界面(win下;
-
主成分分析(PCA)(未完成
-
特征值与特征向量(未完成
-
添加了win下的Endnote x7软件,该软件是用于文献管理的,可直接与word配合使用;
- 点云阶段总结材料
论文阅读方法
标注使用方法: 福昕阅读器有多颜色标注,每读一遍使用一种颜色标注;
-
Volumetric and Multi-View CNNs for Object Classification on 3D Data (基于多视角方法
-
VoxNet: A 3D Convolutional Neural Network for real-time object recognition (基于体素
-
3D ShapeNets: A Deep Representation for Volumetric Shapes (基于体素
-
点云直接转换 CVPR 2017 PointNet PointNet++
- 斯坦福学者首次提出直接处理三维点云的深度学习模型
- VoxelNet: 基于点云的三维空间信息逐层次学习网络
- PCL点云特征描述与提取(1)
- PCL点云特征描述与提取(2)
- PCL点云特征描述与提取(3)
- Analysis of the Accuracy and Robustness of the Leap Motion Controller 这是关于LeapMotion精度问题的一篇文章
- 关于kinectv2性能分析的一些论文
-
InfiniTAM InfiniTAM是一个开源、跨平台、实时的大范围深度信息融合与跟踪技术框架。
-
InfiniTAM v3: A Framework for Large-Scale 3D Reconstruction with Loop Closure
- 3D Convolutional Neural Networks for Human Action Recognition
- KITTI 3D DataSet
- Deep Reinforcement Learning
ImageNet Classification with Deep Convolutional Neural Networks
SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
Reinforcement Learning: An Introduction
- 9月第三周总结,文档链接9月第三周
-
9月第二周总结,文档链接9月第二周
- 9月第一周总结,文档链接9月第一周
- 添加了李飞飞深度学习课程资料,链接Lee feifei
- SqueezeSeq翻译继续
本地代码同步服务器,远程代码调拭
研究课题:3D对象识别
- NIPS DRL CSDN关于Human-level的资料
- Playing Atari with Deep Reinforcement Learning
- Human-level control through deep reinforcement learning
- StarCraft II: A New Challenge for Reinforcement Learning
- Multiagent Bidirectionally-Coordinated Nets Emergence of Human-level Coordination in Learning to Play StarCraft Combat Games∗
- StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning
- Feedback-Based Tree Search for Reinforcement Learning
添加了缪青海老师发送的开题报告样例;