IJCAI2024: First work to propose a solution to select optimal prompts by IAA. 首篇利用IAA来筛选生成模型最佳提示词的工作.
This repo contains the official implementation of AK4Prompts of the IJCAI 2024 paper.
Create a conda environment with the following command:
conda create -n ak4prompts python=3.10
conda activate ak4prompts
pip install -r requirements.txt
Run the demo.ipynb
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import make_image_grid
from AK4Prompts import AK4Prompts
from AK4Prompts_pipeline import AK4PromptsPipeline
device = 'cuda:0'
pipeline= AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16).to(device)
ak4prompts = AK4Prompts().to(device)
ak4prompts_path = "/checkpoints/SD1.5_LCMLoRA_S4_aes1_clip2.25_hps2.25/pytorch_model.bin"
ak4prompts.load_state_dict(torch.load(ak4prompts_path))
ak4prompts_pipeline = AK4PromptsPipeline(pipeline=pipeline,ak4prompts=ak4prompts,keywords_filename="keywords_list.txt")
prompt = "vase of mixed flowers"
scores_weights = {'aesthetic':1,'clip':5,'hps':3}
prompt_with_keywords = ak4prompts_pipeline.keywords_ranking(prompt=prompt,scores_weights=scores_weights,topk=10)
image = pipeline(prompt=prompt_with_keywords, num_inference_steps=4, guidance_scale=1.0).images[0]
image
The demo.ipynb
script also demonstrates the evolution of images generated by setting different degrees of specific preferences.
Evaluates the model checkpoint and baselines. Evaluation includes calculating the rewards and storing the images to local.
python evaluation.py --topk 10 --aes 1.0 --clip 5.0 --hps 3.0 --guidance_scale 1.0
topk
: choose topk keywords
aes
,clip
,hps
: weights for customized keywords-ranking
guidance_scale
: classifier-free guidance scale for TIS model
Accelerate will automatically handle multi-GPU setting. The code can work on a single GPU, as we automatically handle gradient accumulation as per the available GPUs in the CUDA_VISIBLE_DEVICES environment variable. If you are using a GPU with a small or big RAM, please edit the per_gpu_capacity variable accordingly.
accelerate launch train.py --config config/train_config.py:aesthetic_clip_hps