Skip to content

yphacker/text_classification_pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 

Repository files navigation

Toxic Comment Classification Challenge

竞赛链接

数据下载

data

评估标准

the score is the average of the individual AUCs of each predicted column

kaggle score:

5折

model offline score online score note
ml -1 0.97016
cnn -1 0.96977
cnn+预训练 -1 0.97571
rnn -1 0.95663
rnn+atten -1 0.97542
rcnn -1 0.97468
bert(bert-base-uncased) 0.9900 0.98563 0.9895,0.9912,0.9899,0.9888,0.9908
albert(albert-base-v2) 0.9720 -1 0.9686,0.9741,0.9714,0.9730,0.9727
xlmroberta(xlm-roberta-base)
bart(bart-large-cnn)

单折 |model|offline score|note| |:---:|:---:|:---:|:---:| |ml|-1|| |cnn|-1|| |cnn+预训练|-1|| |rnn|-1|| |rnn+atten|-1|| |rcnn|-1|| |bert(bert-base-uncased)|-1|| |albert(albert-base-v2)|98.22|epoch=5就不再提升了| |xlmroberta(xlm-roberta-base)|||| |bart(bart-large-cnn)||||

实验环境

Tesla P100 16G cuda9
python:3.6
torch:1.2.0.dev20190722

script

nohup python main.py -m='cnn' -b=256 -e=3 > nohup/cnn.out 2>&1 &
nohup python main.py -m='bert' -b=32 -e=4 > nohup/bert.out 2>&1 &
nohup python main.py -m='albert' -b=64 -e=8 -mode=2 > nohup/albert.out 2>&1 & nohup python main.py -m='albert' -b=64 -e=5 > nohup/albert.out 2>&1 &
nohup python main.py -m='xlmroberta' -b=20 -e=2 > nohup/xlmroberta.out 2>&1 &
python predict.py -m='bert'

参考文章

参考代码

[1] google-research/bert
[2] google-research/ALBERT
[3] huggingface/transformers
[4] 649453932/Bert-Chinese-Text-Classification-Pytorch

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published