DL_benchmarks surveys speed of each DeepLearning frameworks with dummy data. So, Using dummy data, accuracy of results can not be compared.
- tensorflow
- tensorflow(Eagar)
- tensorflow(Keras)
- pytorch
- chainer
- mxnet
- mxnet(gluon)
- cntk
- cntk(keras)
- cntk(gluon?)
- caffe(keras)
- caffe2(python2...)
- neon
- tiny-net
- nnabla
- dynet
- theano(keras)
See requirements.txt.
I highly recommend using 'miniconda'. It is very easy to install a lot of DL frameworks with it. Without 'miniconda', you must spend a lot of time to install them.
$ wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ # for linux
$ sh Miniconda3-latest-Linux-x86_64.sh
$ conda create -m benchmark pip
$ source activate benchmark
$ conda install pytorch torchvision cuda80 -c soumith
$ # Your GPU is grater than 1080ti.
$ # You should install pytorch from source.
$ # conda install -c anaconda cmake
$ # conda install -c conda-forge bzip2
$ pip install mxnet-cu80
$ # conda install -c pjmtdw mxnet-cudnn (cudnn-5~)
$ pip install https://cntk.ai/PythonWheel/GPU/cntk-2.2-cp36-cp36m-linux_x86_64.whl
$ pip install tensorflow-gpu
$ git clone --recursive https://github.com/NervanaSystems/neon.git
$ (cd neon && make sysinstall)
$ pip install chainer cupy
$ conda install -c conda-forge keras
$ pip install cntk
$ conda install -c mpi4py openmpi
See setup.sh.
$ # pytorch
$ conda install -c anaconda cmake
$ conda install -c conda-forge bzip2
$ git clone --recursive https://github.com/pytorch/pytorch.git
$ cd pytorch; python setup.py install
$
$ # chainer
$ git clone --recursive https://github.com/chainer/chainer.git
$ git clone --recursive https://github.com/chainer/chainer.git
$ cd chainer; python setup.py install
$ cd cupy; python setup.py install
$
$ # mxnet
$ git clone --recursive https://github.com/apache/incubator-mxnet.git
$ conda install -c intel mkl
$ conda install -c intel/label/test mkl
$ conda install -c intel/label/deprecated mkl
$ conda install -c anaconda openblas
$
$ $ git clone --recursive https://github.com/NervanaSystems/neon.git
$ (cd neon && make sysinstall)
$ pip install chainer cupy
$ conda install -c conda-forge keras
$ pip install cntk
$ conda install -c mpi4py openmpi
$ python -m benchmark.main
$
$ python -m benchmark.main with framework=chainer
$ # You can change framework.
$
$ python -m benchmark.main with framework=tensorflow data_config.batch_size=100
$
$ python -m benchmark.main print_config
$ # You can change configuration like the below code.
$ # If you want to know more details about how to use it,
$ # Plaese check sacred library and its homepage.
WIP