Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions benchmarks/prefill_offline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import functools
import humanize

from absl import app
from absl import flags
import numpy as np
import jax

from jetstream_pt import engine as je

FLAGS = flags.FLAGS

_TOKENIZER_PATH = flags.DEFINE_string(
"tokenizer_path",
"tokenizer.model",
"The tokenizer model path",
required=False,
)
_CKPT_PATH = flags.DEFINE_string(
"checkpoint_path", None, "Directory for .pth checkpoints", required=False
)
_BF16_ENABLE = flags.DEFINE_bool(
"bf16_enable", False, "Whether to enable bf16", required=False
)
_CONTEXT_LENGTH = flags.DEFINE_integer(
"context_length", 1024, "The context length", required=False
)
_BATCH_SIZE = flags.DEFINE_integer(
"batch_size", 32, "The batch size", required=False
)
_PROFILING_OUTPUT = flags.DEFINE_string(
"profiling_output",
"",
"The profiling output",
required=False,
)

_SIZE = flags.DEFINE_string("size", "tiny", "size of model")

_QUANTIZE_WEIGHTS = flags.DEFINE_bool(
"quantize_weights", False, "weight quantization"
)
_QUANTIZE_KV_CACHE = flags.DEFINE_bool(
"quantize_kv_cache", False, "kv_cache_quantize"
)
_MAX_CACHE_LENGTH = flags.DEFINE_integer(
"max_cache_length", 1024, "kv_cache_quantize"
)


def create_engine():
"""create a pytorch engine"""
jax.config.update("jax_default_prng_impl", "unsafe_rbg")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "0"

devices = jax.devices()
start = time.perf_counter()
engine = je.create_pytorch_engine(
devices=devices,
tokenizer_path=_TOKENIZER_PATH.value,
ckpt_path=_CKPT_PATH.value,
bf16_enable=True,
param_size=_SIZE.value,
context_length=_CONTEXT_LENGTH.value,
batch_size=_BATCH_SIZE.value,
quantize_weights=_QUANTIZE_WEIGHTS.value,
quantize_kv=_QUANTIZE_KV_CACHE.value,
max_cache_length=_MAX_CACHE_LENGTH.value,
)

print("Initialize engine", time.perf_counter() - start)
return engine


def delete_pytree(p):
"""delete jax pytree"""

def delete_leaf(leaf):
if isinstance(leaf, jax.Array):
leaf.delete()
del leaf

jax.tree_map(delete_leaf, p)


def print_mem_usage():
"""Print current mem usage"""
fmt_size = functools.partial(humanize.naturalsize, binary=True)

for d in jax.local_devices():
stats = d.memory_stats()
used = stats["bytes_in_use"]
limit = stats["bytes_limit"]
print(
f"memory using {fmt_size(used)} / {fmt_size(limit)} ({used/limit:%}) on {d}"
)


def create_prefill_tokens():
"""create list of prefill tokens"""
prefill_lengths = [
16,
32,
64,
128,
256,
512,
1024,
2048,
4096,
8192,
16384,
32768,
# 65536,
# 131072,
]
tokens_list = []
for length in prefill_lengths:
tokens = np.random.randint(1, 32000, length)
tokens_list.append(tokens)
return tokens_list


def prefill_benchmark(tokens_list, engine, params, warmup):
"""prefill bechmark function"""
for prefill_tokens in tokens_list:
# pylint: disable-next=all
warmup_text = "warmup" if warmup else "execute"
it = time.time()
prefill_result = engine.prefill(
params=params,
padded_tokens=prefill_tokens,
true_length=len(prefill_tokens),
)
print(f"---- {warmup_text} First Token: {prefill_result.token}")
elapsed = time.time() - it
print(
f"---- {warmup_text} time: {elapsed} for token_len: {len(prefill_tokens)}"
)
if warmup:
print_mem_usage()
delete_pytree(prefill_result)
print("\n\n")


# pylint: disable-next=all
def main(argv):

engine = create_engine()

start = time.perf_counter()
params = engine.load_params()
print("Load params ", time.perf_counter() - start)

if _PROFILING_OUTPUT.value:
jax.profiler.start_trace(_PROFILING_OUTPUT.value)
print_mem_usage()
tokens_list = create_prefill_tokens()
for _ in range(3):
prefill_benchmark(
tokens_list=tokens_list, engine=engine, params=params, warmup=True
)
prefill_benchmark(
tokens_list=tokens_list, engine=engine, params=params, warmup=True
)

for _ in range(5):
prefill_benchmark(
tokens_list=tokens_list, engine=engine, params=params, warmup=False
)
prefill_benchmark(
tokens_list=tokens_list, engine=engine, params=params, warmup=False
)

if _PROFILING_OUTPUT.value:
jax.profiler.stop_trace()


if __name__ == "__main__":
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "0"
app.run(main)