|
| 1 | +/// Finds the index (position) of the rightmost set bit in a number. |
| 2 | +/// |
| 3 | +/// The index is 1-based, where position 1 is the least significant bit (rightmost). |
| 4 | +/// This function uses the bitwise trick `n & -n` to isolate the rightmost set bit, |
| 5 | +/// then calculates its position using logarithm base 2. |
| 6 | +/// |
| 7 | +/// # Algorithm |
| 8 | +/// |
| 9 | +/// 1. Use `n & -n` to isolate the rightmost set bit |
| 10 | +/// 2. Calculate log2 of the result to get the 0-based position |
| 11 | +/// 3. Add 1 to convert to 1-based indexing |
| 12 | +/// |
| 13 | +/// # Arguments |
| 14 | +/// |
| 15 | +/// * `num` - A positive integer |
| 16 | +/// |
| 17 | +/// # Returns |
| 18 | +/// |
| 19 | +/// * `Ok(u32)` - The 1-based position of the rightmost set bit |
| 20 | +/// * `Err(String)` - An error message if the input is invalid |
| 21 | +/// |
| 22 | +/// # Examples |
| 23 | +/// |
| 24 | +/// ``` |
| 25 | +/// # use the_algorithms_rust::bit_manipulation::index_of_rightmost_set_bit; |
| 26 | +/// // 18 in binary: 10010, rightmost set bit is at position 2 |
| 27 | +/// assert_eq!(index_of_rightmost_set_bit(18).unwrap(), 2); |
| 28 | +/// |
| 29 | +/// // 12 in binary: 1100, rightmost set bit is at position 3 |
| 30 | +/// assert_eq!(index_of_rightmost_set_bit(12).unwrap(), 3); |
| 31 | +/// |
| 32 | +/// // 5 in binary: 101, rightmost set bit is at position 1 |
| 33 | +/// assert_eq!(index_of_rightmost_set_bit(5).unwrap(), 1); |
| 34 | +/// |
| 35 | +/// // 16 in binary: 10000, rightmost set bit is at position 5 |
| 36 | +/// assert_eq!(index_of_rightmost_set_bit(16).unwrap(), 5); |
| 37 | +/// |
| 38 | +/// // 0 has no set bits |
| 39 | +/// assert!(index_of_rightmost_set_bit(0).is_err()); |
| 40 | +/// ``` |
| 41 | +pub fn index_of_rightmost_set_bit(num: i32) -> Result<u32, String> { |
| 42 | + if num <= 0 { |
| 43 | + return Err("input must be a positive integer".to_string()); |
| 44 | + } |
| 45 | + |
| 46 | + // Isolate the rightmost set bit using n & -n |
| 47 | + let rightmost_bit = num & -num; |
| 48 | + |
| 49 | + // Calculate position: log2(rightmost_bit) + 1 |
| 50 | + // We use trailing_zeros which gives us the 0-based position |
| 51 | + // and add 1 to make it 1-based |
| 52 | + let position = rightmost_bit.trailing_zeros() + 1; |
| 53 | + |
| 54 | + Ok(position) |
| 55 | +} |
| 56 | + |
| 57 | +/// Alternative implementation using a different algorithm approach. |
| 58 | +/// |
| 59 | +/// This version demonstrates the mathematical relationship between |
| 60 | +/// the rightmost set bit position and log2. |
| 61 | +/// |
| 62 | +/// # Examples |
| 63 | +/// |
| 64 | +/// ``` |
| 65 | +/// # use the_algorithms_rust::bit_manipulation::index_of_rightmost_set_bit_log; |
| 66 | +/// assert_eq!(index_of_rightmost_set_bit_log(18).unwrap(), 2); |
| 67 | +/// assert_eq!(index_of_rightmost_set_bit_log(12).unwrap(), 3); |
| 68 | +/// ``` |
| 69 | +pub fn index_of_rightmost_set_bit_log(num: i32) -> Result<u32, String> { |
| 70 | + if num <= 0 { |
| 71 | + return Err("input must be a positive integer".to_string()); |
| 72 | + } |
| 73 | + |
| 74 | + // Isolate the rightmost set bit |
| 75 | + let rightmost_bit = num & -num; |
| 76 | + |
| 77 | + // Use f64 log2 and convert to position |
| 78 | + let position = (rightmost_bit as f64).log2() as u32 + 1; |
| 79 | + |
| 80 | + Ok(position) |
| 81 | +} |
| 82 | + |
| 83 | +#[cfg(test)] |
| 84 | +mod tests { |
| 85 | + use super::*; |
| 86 | + |
| 87 | + #[test] |
| 88 | + fn test_basic_cases() { |
| 89 | + // 18 = 10010 in binary, rightmost set bit at position 2 |
| 90 | + assert_eq!(index_of_rightmost_set_bit(18).unwrap(), 2); |
| 91 | + |
| 92 | + // 12 = 1100 in binary, rightmost set bit at position 3 |
| 93 | + assert_eq!(index_of_rightmost_set_bit(12).unwrap(), 3); |
| 94 | + |
| 95 | + // 5 = 101 in binary, rightmost set bit at position 1 |
| 96 | + assert_eq!(index_of_rightmost_set_bit(5).unwrap(), 1); |
| 97 | + } |
| 98 | + |
| 99 | + #[test] |
| 100 | + fn test_powers_of_two() { |
| 101 | + // 1 = 1 in binary, position 1 |
| 102 | + assert_eq!(index_of_rightmost_set_bit(1).unwrap(), 1); |
| 103 | + |
| 104 | + // 2 = 10 in binary, position 2 |
| 105 | + assert_eq!(index_of_rightmost_set_bit(2).unwrap(), 2); |
| 106 | + |
| 107 | + // 4 = 100 in binary, position 3 |
| 108 | + assert_eq!(index_of_rightmost_set_bit(4).unwrap(), 3); |
| 109 | + |
| 110 | + // 8 = 1000 in binary, position 4 |
| 111 | + assert_eq!(index_of_rightmost_set_bit(8).unwrap(), 4); |
| 112 | + |
| 113 | + // 16 = 10000 in binary, position 5 |
| 114 | + assert_eq!(index_of_rightmost_set_bit(16).unwrap(), 5); |
| 115 | + |
| 116 | + // 32 = 100000 in binary, position 6 |
| 117 | + assert_eq!(index_of_rightmost_set_bit(32).unwrap(), 6); |
| 118 | + } |
| 119 | + |
| 120 | + #[test] |
| 121 | + fn test_odd_numbers() { |
| 122 | + // All odd numbers have rightmost set bit at position 1 |
| 123 | + assert_eq!(index_of_rightmost_set_bit(1).unwrap(), 1); |
| 124 | + assert_eq!(index_of_rightmost_set_bit(3).unwrap(), 1); |
| 125 | + assert_eq!(index_of_rightmost_set_bit(7).unwrap(), 1); |
| 126 | + assert_eq!(index_of_rightmost_set_bit(15).unwrap(), 1); |
| 127 | + assert_eq!(index_of_rightmost_set_bit(31).unwrap(), 1); |
| 128 | + } |
| 129 | + |
| 130 | + #[test] |
| 131 | + fn test_even_numbers() { |
| 132 | + // 6 = 110 in binary, rightmost set bit at position 2 |
| 133 | + assert_eq!(index_of_rightmost_set_bit(6).unwrap(), 2); |
| 134 | + |
| 135 | + // 10 = 1010 in binary, rightmost set bit at position 2 |
| 136 | + assert_eq!(index_of_rightmost_set_bit(10).unwrap(), 2); |
| 137 | + |
| 138 | + // 20 = 10100 in binary, rightmost set bit at position 3 |
| 139 | + assert_eq!(index_of_rightmost_set_bit(20).unwrap(), 3); |
| 140 | + } |
| 141 | + |
| 142 | + #[test] |
| 143 | + fn test_zero() { |
| 144 | + assert!(index_of_rightmost_set_bit(0).is_err()); |
| 145 | + assert_eq!( |
| 146 | + index_of_rightmost_set_bit(0).unwrap_err(), |
| 147 | + "input must be a positive integer" |
| 148 | + ); |
| 149 | + } |
| 150 | + |
| 151 | + #[test] |
| 152 | + fn test_negative_numbers() { |
| 153 | + assert!(index_of_rightmost_set_bit(-1).is_err()); |
| 154 | + assert!(index_of_rightmost_set_bit(-10).is_err()); |
| 155 | + assert_eq!( |
| 156 | + index_of_rightmost_set_bit(-5).unwrap_err(), |
| 157 | + "input must be a positive integer" |
| 158 | + ); |
| 159 | + } |
| 160 | + |
| 161 | + #[test] |
| 162 | + fn test_large_numbers() { |
| 163 | + // 1024 = 10000000000 in binary, position 11 |
| 164 | + assert_eq!(index_of_rightmost_set_bit(1024).unwrap(), 11); |
| 165 | + |
| 166 | + // 1023 = 1111111111 in binary, position 1 |
| 167 | + assert_eq!(index_of_rightmost_set_bit(1023).unwrap(), 1); |
| 168 | + |
| 169 | + // 2048 = 100000000000 in binary, position 12 |
| 170 | + assert_eq!(index_of_rightmost_set_bit(2048).unwrap(), 12); |
| 171 | + } |
| 172 | + |
| 173 | + #[test] |
| 174 | + fn test_consecutive_numbers() { |
| 175 | + // Testing a range to ensure correctness |
| 176 | + assert_eq!(index_of_rightmost_set_bit(14).unwrap(), 2); // 1110 |
| 177 | + assert_eq!(index_of_rightmost_set_bit(15).unwrap(), 1); // 1111 |
| 178 | + assert_eq!(index_of_rightmost_set_bit(16).unwrap(), 5); // 10000 |
| 179 | + assert_eq!(index_of_rightmost_set_bit(17).unwrap(), 1); // 10001 |
| 180 | + } |
| 181 | + |
| 182 | + #[test] |
| 183 | + fn test_log_version() { |
| 184 | + // Test the alternative log-based implementation |
| 185 | + assert_eq!(index_of_rightmost_set_bit_log(18).unwrap(), 2); |
| 186 | + assert_eq!(index_of_rightmost_set_bit_log(12).unwrap(), 3); |
| 187 | + assert_eq!(index_of_rightmost_set_bit_log(5).unwrap(), 1); |
| 188 | + assert_eq!(index_of_rightmost_set_bit_log(16).unwrap(), 5); |
| 189 | + } |
| 190 | + |
| 191 | + #[test] |
| 192 | + fn test_both_implementations_match() { |
| 193 | + // Verify both implementations give the same results |
| 194 | + for i in 1..=100 { |
| 195 | + assert_eq!( |
| 196 | + index_of_rightmost_set_bit(i).unwrap(), |
| 197 | + index_of_rightmost_set_bit_log(i).unwrap() |
| 198 | + ); |
| 199 | + } |
| 200 | + } |
| 201 | +} |
0 commit comments