Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
82 changes: 53 additions & 29 deletions app/api/v1/endpoints/aichat.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,35 +92,59 @@ async def generate_graph(
text += f"标题: {note.title}\n" if note.title else ""
text += note.content if note.content else ""
text += """
我需要你对于上面的内容生成思维导图,请仅给我返回mermaid代码,不要有其他内容,下面是生成样例,
graph TD
A[Natural Language Navigation for Service Robots] --> B[Task Definition]
A --> C[Challenges]
A --> D[Proposed Solution]
A --> E[Experimental Results]

B --> B1["- Predict action sequence from NL instructions"]
B --> B2["- Example: 'Walk out of bathroom to right stairs'"]

C --> C1["- Environment exploration"]
C --> C2["- Accurate path following"]
C --> C3["- Language-vision relationship modeling"]

D --> D1[CrossMap Transformer Network]
D --> D2[Transformer-based Speaker]
D --> D3[Double Back-Translation Model]

D1 --> D11["- Encodes linguistic/visual features"]
D1 --> D12["- Sequentially generates paths"]

D2 --> D21["- Generates navigation instructions"]

D3 --> D31["- Paths → Instructions"]
D3 --> D32["- Instructions → Paths"]
D3 --> D33["- Shared latent features"]

E --> E1["- Improved instruction understanding"]
E --> E2["- Enhanced instruction generation"
我需要你对于上面的内容生成思维导图,请仅给我返回mermaid代码,不要有其他内容,请保证每个连通子图竖向排列,下面是生成样例,
graph TD
A[机器学习项目] --> B[数据收集]
A --> C[数据预处理]
A --> D[特征工程]
A --> E[模型选择]
A --> F[模型训练]
A --> G[模型评估]
A --> H[模型部署]

subgraph 数据预处理
C1[处理缺失值] --> C2[处理异常值]
C2 --> C3[数据标准化]
C3 --> C4[数据编码]
end

subgraph 特征工程
D1[特征选择] --> D2[特征提取]
D2 --> D3[特征构造]
D3 --> D4[特征缩放]
end

subgraph 模型选择
E1[线性回归] --> E2[决策树]
E2 --> E3[支持向量机]
E3 --> E4[神经网络]
end

subgraph 模型训练
F1[划分训练集和验证集] --> F2[选择损失函数]
F2 --> F3[选择优化算法]
F3 --> F4[训练模型]
end

subgraph 模型评估
G1[计算准确率] --> G2[计算召回率]
G2 --> G3[计算F1分数]
G3 --> G4[绘制混淆矩阵]
end

subgraph 模型部署
H1[模型保存] --> H2[选择部署平台]
H2 --> H3[模型集成]
H3 --> H4[模型监控]
H4 --> H5[模型更新]
end

B --> 数据预处理
C --> 特征工程
D --> 模型选择
E --> 模型训练
F --> 模型评估
G --> 模型部署
"""
try:
ans = await kimi_chat([{"role": "user", "content": text}], model="moonshot-v1-32k")
Expand Down