Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ The AS library generates some log data when performing many calculation function
</dependency>
</dependencies>
```
#### 可选依赖项
#### Optional Dependencies

When interfacing with various platforms such as databases and Sparks, the AS library needs to use third-party dependency packages, which are optional. If you do not need to use these functions, you may not need to import dependencies. If you need to, you can refer to the following configuration.
```xml
Expand Down Expand Up @@ -243,25 +243,25 @@ AS library runs.

### KnowledgeDocument

The knowledge base file archive is used for the storage task of ASMB series knowledge documents. You can access it
The knowledge base file archive is used for the storage task of AS-MB series knowledge documents. You can access it
directly through the documents on the home page. There is no need to enter here directly. It is messy internally.

### src_code

The source code storage directory of ASMB, where you can view the relevant source code of ASMB. Of course, here is the
The source code storage directory of AS-MB, where you can view the relevant source code of AS-MB. Of course, here is the
latest source code, which you can use to compile, so that you can obtain the latest version.

Note: The latest version is often unstable, so we recommend you to use the version that has been released for a long
time!

### README-Chinese.md

The Chinese version of the ASMB homepage document. You can switch languages on the homepage default page to access this
The Chinese version of the AS-MB homepage document. You can switch languages on the homepage default page to access this
file.

### README.md

The default version of the ASMB homepage document. You can directly access this file on the homepage!
The default version of the AS-MB homepage document. You can directly access this file on the homepage!

- 切换到 [中文文档](https://github.com/BeardedManZhao/algorithmStar/blob/main/README-Chinese.md)

Expand Down
30 changes: 15 additions & 15 deletions src_code/README-Chinese.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ import zhao.algorithmMagic.operands.matrix.block.IntegerMatrixSpace;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_1.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_1.jpg";
IntegerMatrix integerMatrix;
{
// 设置权重
Expand All @@ -39,7 +39,7 @@ public class MAIN1 {
// 输出图片1的卷积图像文件
ImageRenderingIntegrator image = new ImageRenderingIntegrator(
"image",
new ImageRenderingMarLauncher<>(integerMatrix, "C:\\Users\\Liming\\Desktop\\fsdownload\\res12.jpg", 1)
new ImageRenderingMarLauncher<>(integerMatrix, "C:\\Users\\Liming\\Desktop\\fsDownload\\res12.jpg", 1)
);
if (image.run()) {
System.out.println("ok!!!");
Expand All @@ -57,7 +57,7 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) throws InterruptedException {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_1.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_1.jpg";
ColorMatrix parse = ColorMatrix.parse(s1);
parse.show("image");
Thread.sleep(1024);
Expand Down Expand Up @@ -114,15 +114,15 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\zhao\\Desktop\\fsdownload\\微信图片_2.jpg";
String s1 = "C:\\Users\\zhao\\Desktop\\fsDownload\\微信图片_2.jpg";
// 获取到图像矩阵对象
ColorMatrix parse = ColorMatrix.parse(s1);
// 将图像在原图像的基础上进行颜色反转操作
parse.colorReversal(false);
// 查看颜色反转之后的图像
parse.show("image1");
// 输出反转之后的图像
parse.save("C:\\Users\\zhao\\Desktop\\fsdownload\\res123.jpg");
parse.save("C:\\Users\\zhao\\Desktop\\fsDownload\\res123.jpg");
}
}
```
Expand All @@ -136,11 +136,11 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_2.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_2.jpg";
// 获取到图像矩阵对象
ColorMatrix parse = ColorMatrix.parse(s1);
// 输出图像RGB文本数据
parse.save("C:\\Users\\Liming\\Desktop\\fsdownload\\res1234.csv", ',');
parse.save("C:\\Users\\Liming\\Desktop\\fsDownload\\res1234.csv", ',');
}
}
```
Expand Down Expand Up @@ -179,7 +179,7 @@ public class MAIN1 {
.count() // 将每一组进行统计
.sort("count()") // 按照统计结果进行正序排序
.limit(3); // 获取最多前3行数据
System.out.println(select.into_outfile("C:\\Users\\zhao\\Desktop\\fsdownload\\res1.csv"));
System.out.println(select.into_outfile("C:\\Users\\zhao\\Desktop\\fsDownload\\res1.csv"));
// 打印存储 FDF 中的数据行数
System.out.println("数据行数 = " + execute.count());
// 打印出其中的信息
Expand Down Expand Up @@ -459,7 +459,7 @@ public class MAIN1 {
parse1.show("image");
// 输出图像的 ASCII 数值,输出规则为 G 通道颜色数值 大于 40 的 输出符号 'A' 其它输出符号 ' '
parse1.save(
new File("C:\\Users\\zhao\\Desktop\\fsdownload\\res.txt"),
new File("C:\\Users\\zhao\\Desktop\\fsDownload\\res.txt"),
ColorMatrix._G_, 40, 'A', ' '
);
}
Expand Down Expand Up @@ -607,7 +607,7 @@ public class MAIN1 {
);
// 输出表的HTML 然后查看表中的数据
System.out.println(
insert.into_outHtml("C:\\Users\\Liming\\Desktop\\fsdownload\\res11234.html", "myTable")
insert.into_outHtml("C:\\Users\\Liming\\Desktop\\fsDownload\\res11234.html", "myTable")
);
}
}
Expand All @@ -625,8 +625,8 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test1.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test1.bmp");
// 将 colorMatrix2 + colorMatrix1 的结果图像展示出来
(colorMatrix1.add(colorMatrix2)).show("image");
}
Expand All @@ -645,8 +645,8 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test1.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test1.bmp");
// 使用 agg 函数以及内置的计算方案进行两个矩阵的合并
// 下面函数中的第二个形参代表的就是矩阵中元素的聚合逻辑,这里使用的是求和,并对越界颜色数值进行规整的逻辑实现
colorMatrix1.agg(colorMatrix2, ColorMatrix.COLOR_SUM_REGULATE).show("image");
Expand All @@ -667,7 +667,7 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parseGrayscale("C:\\Users\\Liming\\Desktop\\fsdownload\\test2.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parseGrayscale("C:\\Users\\Liming\\Desktop\\fsDownload\\test2.bmp");
// 对图像进行二值化
colorMatrix1.globalBinary(ColorMatrix._G_, 100, 0xffffff, 0);
colorMatrix1.show("腐蚀之前的 image");
Expand Down
30 changes: 15 additions & 15 deletions src_code/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@ import zhao.algorithmMagic.operands.matrix.block.IntegerMatrixSpace;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_1.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_1.jpg";
IntegerMatrix integerMatrix;
{
// 设置权重
Expand All @@ -40,7 +40,7 @@ public class MAIN1 {
// 输出图片1的卷积图像文件
ImageRenderingIntegrator image = new ImageRenderingIntegrator(
"image",
new ImageRenderingMarLauncher<>(integerMatrix, "C:\\Users\\Liming\\Desktop\\fsdownload\\res12.jpg", 1)
new ImageRenderingMarLauncher<>(integerMatrix, "C:\\Users\\Liming\\Desktop\\fsDownload\\res12.jpg", 1)
);
if (image.run()) {
System.out.println("ok!!!");
Expand All @@ -58,7 +58,7 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) throws InterruptedException {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_1.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_1.jpg";
ColorMatrix parse = ColorMatrix.parse(s1);
parse.show("image");
Thread.sleep(1024);
Expand Down Expand Up @@ -117,15 +117,15 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\zhao\\Desktop\\fsdownload\\微信图片_2.jpg";
String s1 = "C:\\Users\\zhao\\Desktop\\fsDownload\\微信图片_2.jpg";
// 获取到图像矩阵对象
ColorMatrix parse = ColorMatrix.parse(s1);
// 将图像在原图像的基础上进行颜色反转操作
parse.colorReversal(false);
// 查看颜色反转之后的图像
parse.show("image1");
// 输出反转之后的图像
parse.save("C:\\Users\\zhao\\Desktop\\fsdownload\\res123.jpg");
parse.save("C:\\Users\\zhao\\Desktop\\fsDownload\\res123.jpg");
}
}
```
Expand All @@ -140,11 +140,11 @@ import zhao.algorithmMagic.operands.matrix.ColorMatrix;

public class MAIN1 {
public static void main(String[] args) {
String s1 = "C:\\Users\\Liming\\Desktop\\fsdownload\\微信图片_2.jpg";
String s1 = "C:\\Users\\Liming\\Desktop\\fsDownload\\微信图片_2.jpg";
// 获取到图像矩阵对象
ColorMatrix parse = ColorMatrix.parse(s1);
// 输出图像RGB文本数据
parse.save("C:\\Users\\Liming\\Desktop\\fsdownload\\res1234.csv", ',');
parse.save("C:\\Users\\Liming\\Desktop\\fsDownload\\res1234.csv", ',');
}
}
```
Expand Down Expand Up @@ -184,7 +184,7 @@ public class MAIN1 {
.count() // 将每一组进行统计
.sort("count()") // 按照统计结果进行正序排序
.limit(3); // 获取最多前3行数据
System.out.println(select.into_outfile("C:\\Users\\zhao\\Desktop\\fsdownload\\res1.csv"));
System.out.println(select.into_outfile("C:\\Users\\zhao\\Desktop\\fsDownload\\res1.csv"));
// 打印存储 FDF 中的数据行数
System.out.println("数据行数 = " + execute.count());
// 打印出其中的信息
Expand Down Expand Up @@ -459,7 +459,7 @@ public class MAIN1 {
parse1.show("image");
// 输出图像的 ASCII 数值,输出规则为 G 通道颜色数值 大于 40 的 输出符号 'A' 其它输出符号 ' '
parse1.save(
new File("C:\\Users\\zhao\\Desktop\\fsdownload\\res.txt"),
new File("C:\\Users\\zhao\\Desktop\\fsDownload\\res.txt"),
ColorMatrix._G_, 40, 'A', ' '
);
}
Expand Down Expand Up @@ -608,7 +608,7 @@ public class MAIN1 {
);
// 输出表的HTML 然后查看表中的数据
System.out.println(
insert.into_outHtml("C:\\Users\\Liming\\Desktop\\fsdownload\\res11234.html", "myTable")
insert.into_outHtml("C:\\Users\\Liming\\Desktop\\fsDownload\\res11234.html", "myTable")
);
}
}
Expand All @@ -627,8 +627,8 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test1.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test1.bmp");
// 将 colorMatrix2 + colorMatrix1 的结果图像展示出来
(colorMatrix1.add(colorMatrix2)).show("image");
}
Expand All @@ -647,8 +647,8 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsdownload\\test1.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test.bmp");
ColorMatrix colorMatrix2 = ColorMatrix.parse("C:\\Users\\Liming\\Desktop\\fsDownload\\test1.bmp");
// 使用 agg 函数以及内置的计算方案进行两个矩阵的合并
// 下面函数中的第二个形参代表的就是矩阵中元素的聚合逻辑,这里使用的是求和,并对越界颜色数值进行规整的逻辑实现
colorMatrix1.agg(colorMatrix2, ColorMatrix.COLOR_SUM_REGULATE).show("image");
Expand All @@ -669,7 +669,7 @@ import java.sql.SQLException;
public class MAIN1 {
public static void main(String[] args) {
// 将一些图像文件转换成为一个图像矩阵对象
ColorMatrix colorMatrix1 = ColorMatrix.parseGrayscale("C:\\Users\\Liming\\Desktop\\fsdownload\\test2.bmp");
ColorMatrix colorMatrix1 = ColorMatrix.parseGrayscale("C:\\Users\\Liming\\Desktop\\fsDownload\\test2.bmp");
// 对图像进行二值化
colorMatrix1.globalBinary(ColorMatrix._G_, 100, 0xffffff, 0);
colorMatrix1.show("腐蚀之前的 image");
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1279,7 +1279,6 @@ public void save(String path, char sep) {
* <p>
* Directory path to save.
* @param sep 保存时使用的分隔符。
*
*/
@Override
public void save(File path, char sep) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -636,7 +636,6 @@ public void save(String path) {
* <p>
* Directory path to save.
* @param sep 保存时使用的分隔符。
*
*/
@Override
public void save(String path, char sep) {
Expand All @@ -652,7 +651,6 @@ public void save(String path, char sep) {
* <p>
* Directory path to save.
* @param sep 保存时使用的分隔符。
*
*/
@Override
public void save(File path, char sep) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -632,7 +632,6 @@ public void save(String path) {
* <p>
* Directory path to save.
* @param sep 保存时使用的分隔符。
*
*/
@Override
public void save(String path, char sep) {
Expand All @@ -648,7 +647,6 @@ public void save(String path, char sep) {
* <p>
* Directory path to save.
* @param sep 保存时使用的分隔符。
*
*/
@Override
public void save(File path, char sep) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -183,10 +183,10 @@ public IntegerMatrixSpace transpose() {
/**
* 对矩阵空间进行卷积计算,在卷积计算的时候会产生出一个更小的特征矩阵。
*
* @param width 矩阵进行卷积运算的时的子图像宽度,最好选择能够被矩阵的列数整除的数值。
* @param height 矩阵进行卷积运算时的子图像高度,最好选中能够被矩阵的行数整除的数值。
* @param width 矩阵进行卷积运算的时的子图像宽度,最好选择能够被矩阵的列数整除的数值。
* @param height 矩阵进行卷积运算时的子图像高度,最好选中能够被矩阵的行数整除的数值。
* @param weightMat 在进行卷积计算时需要的卷积核矩阵对象,该对象的宽高应与卷积函数的形参一致。
*
* <p>
* The convolution kernel matrix object required for convolution computation, whose width and height should be consistent with the formal parameters of the convolution function.
* @return 矩阵空间卷积结果特征图,保持三通道的格式返回。
*/
Expand Down Expand Up @@ -252,12 +252,11 @@ public IntegerMatrixSpace folding(int width, int height, IntegerMatrixSpace weig
/**
* 对矩阵空间进行卷积计算,在卷积计算的时候会产生出一个更小的特征矩阵。
*
* @param width 矩阵进行卷积运算的时的子图像宽度,最好选择能够被矩阵的列数整除的数值。
* @param height 矩阵进行卷积运算时的子图像高度,最好选中能够被矩阵的行数整除的数值。
* @param width 矩阵进行卷积运算的时的子图像宽度,最好选择能够被矩阵的列数整除的数值。
* @param height 矩阵进行卷积运算时的子图像高度,最好选中能够被矩阵的行数整除的数值。
* @param weightMat 在进行卷积计算时需要的卷积核矩阵对象,该对象的宽高应与卷积函数的形参一致。
*
* <p>
* The convolution kernel matrix object required for convolution computation, whose width and height should be consistent with the formal parameters of the convolution function.
*
* @return 矩阵空间卷积结果特征图,以三原色通道之和的方式返回一个矩阵。
*/
public final IntegerMatrix foldingAndSum(int width, int height, IntegerMatrixSpace weightMat) {
Expand Down
Loading