Skip to content

BurstBooksPublishing/Advanced-CUDA-Programming

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

Advanced Cuda Programming

Cover

Book Cover

Repository Structure

  • covers/: Book cover images
  • blurbs/: Promotional blurbs
  • infographics/: Marketing visuals
  • source_code/: Code samples
  • manuscript/: Drafts and format.txt for TOC
  • marketing/: Ads and press releases
  • additional_resources/: Extras
  • Advanced CUDA Programming: High Performance Computing with GPUs

Chapter 1. Advanced CUDA Architecture Deep Dive

Section 1. Modern GPU Architecture

  • Ampere/Hopper Architecture Details
  • Streaming Multiprocessor Internals
  • Memory Controller Design

Section 2. Advanced Thread Execution Model

  • Warp Scheduling Mechanisms
  • Branch Prediction and Divergence
  • Instruction-Level Parallelism

Section 3. Memory System Internals

  • Cache Hierarchy Implementation
  • Memory Coalescing Mechanisms
  • L2 Cache Optimization Strategies

Chapter 2. Memory Management and Optimization

Section 1. Advanced Memory Patterns

  • Custom Memory Allocators
  • Memory Pool Implementation
  • Zero-Copy Memory Strategies

Section 2. Unified Memory Programming

  • Page Migration Engines
  • Prefetch Optimization
  • System-Wide Memory Access

Section 3. Memory Access Optimization

  • Bank Conflict Resolution
  • Shared Memory Access Patterns
  • Cache Line Utilization

Chapter 3. CUDA Streams and Asynchronous Programming

Section 1. Advanced Stream Management

  • Multi-Stream Scheduling
  • Stream Priority Control
  • Event-Based Synchronization

Section 2. Asynchronous Memory Operations

  • Overlapping Data Transfers
  • Pinned Memory Usage
  • Asynchronous Prefetching

Section 3. Advanced Synchronization

  • Inter-Stream Dependencies
  • CPU-GPU Synchronization
  • Multi-GPU Coordination

Chapter 4. Advanced Kernel Development

Section 1. Thread Block Optimization

  • Dynamic Block Sizing
  • Occupancy-Driven Design
  • Resource Utilization

Section 2. Warp-Level Programming

  • Warp Primitives
  • Cooperative Groups
  • Shuffle Instructions

Section 3. Dynamic Parallelism

  • Recursive Kernel Launch
  • Parent-Child Synchronization
  • Resource Management

Chapter 5. Performance Optimization Techniques

Section 1. Instruction-Level Optimization

  • Assembly Analysis
  • PTX Optimization
  • Register Pressure Management

Section 2. Memory-Bound Optimization

  • Memory Access Patterns
  • Texture Memory Usage
  • Constant Memory Optimization

Section 3. Compute-Bound Optimization

  • Arithmetic Intensity
  • Thread Coarsening
  • Loop Unrolling Strategies

Chapter 6. Advanced Data Structures for GPUs

Section 1. GPU-Optimized Containers

  • Lock-Free Data Structures
  • Concurrent Hash Tables
  • Priority Queues

Section 2. Custom Memory Management

  • Slab Allocators
  • Memory Pools
  • Defragmentation Techniques

Section 3. Sparse Data Structures

  • Compressed Formats
  • Dynamic Updates
  • Efficient Traversal

Chapter 7. Scientific Computing Applications

Section 1. Linear Algebra Implementations

  • Custom BLAS Operations
  • Sparse Matrix Operations
  • Eigenvalue Solvers

Section 2. Numerical Methods

  • FFT Implementation
  • Differential Equations
  • Monte Carlo Methods

Section 3. Optimization Algorithms

  • Parallel Sort Implementation
  • Graph Algorithms
  • Numerical Optimization

Chapter 8. Machine Learning and AI Acceleration

Section 1. Deep Learning Primitives

  • Custom GEMM Implementation
  • Convolution Optimization
  • Tensor Core Programming

Section 2. Training Optimization

  • Mixed Precision Training
  • Memory-Efficient Training
  • Multi-GPU Training

Section 3. Inference Optimization

  • Quantization Techniques
  • Kernel Fusion
  • Batch Processing

Chapter 9. Multi-GPU Programming

Section 1. Multi-GPU Communication

  • P2P Communication
  • NVLink Optimization
  • Remote Memory Access

Section 2. Workload Distribution

  • Load Balancing Strategies
  • Memory Distribution
  • Synchronization Methods

Section 3. Distributed Computing

  • MPI Integration
  • Multi-Node Systems
  • Cluster Programming

Chapter 10. Advanced Debugging and Profiling

Section 1. Performance Analysis

  • Nsight Compute Usage
  • Roofline Analysis
  • Memory Access Patterns

Section 2. Advanced Debugging

  • CUDA-GDB Techniques
  • Memory Checking Tools
  • Race Detection

Section 3. Optimization Tools

  • Metrics Collection
  • Visual Profiler
  • Custom Profiling

Chapter 11. Real-time Processing

Section 1. Low-Latency Techniques

  • Kernel Scheduling
  • Memory Management
  • Pipeline Optimization

Section 2. Real-time Constraints

  • Deterministic Execution
  • Deadline Scheduling
  • Resource Management

Section 3. Stream Processing

  • Data Pipeline Design
  • Continuous Processing
  • Buffer Management

Chapter 12. Advanced Topics and Future Directions

Section 1. Emerging Technologies

  • Ray Tracing Cores
  • New Memory Technologies
  • Next-Gen Architecture

Section 2. Advanced Programming Models

  • Graph Programming
  • Quantum Simulation
  • Domain-Specific Languages

Section 3. Industry Applications

  • Case Studies
  • Performance Analysis
  • Best Practices

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published