Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 5 additions & 5 deletions src/content/questions/comp2804/2014-fall-midterm/7/solution.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
${(5x-36)}^{100}$

$=\sum^{100}_{k=0} \binom{100}{k}{(5x)}^k {(-3y)}^{n-k}$
$ = \sum^{100}_{k=0} \binom{100}{k} {(5x)}^{n-k} {(-3y)}^{k} $

$=\binom{100}{20}{(5x)}^{20} {(-3y)}^{80}$
We only consider $k=80$, as it results in $y^{80}$.

$=\binom{100}{20}5^{20} 3^{80} x^{20} y^{80}$
$ = \binom{100}{80} \cdot {(5x)}^{100-80} \cdot {(-3y)}^{80} $

$=\binom{100}{80}5^{20} 3^{80} x^{20} y^{80}$
$ = \binom{100}{80} \cdot 5^{20} \cdot {(-3)}^{80} \cdot x^{20} \cdot y^{80} $

$=\binom{100}{80}5^{20} 3^{80}$ (this is the coefficient)
$ = \binom{100}{80} \cdot 5^{20} \cdot 3^{80} $ (final answer, i.e. the coefficient of $x^{20} y^{80}$)
12 changes: 8 additions & 4 deletions src/content/questions/comp2804/2015-fall-final/4/solution.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
$ = \sum^{20}\_{k=0} \binom{20}{k} {(-3x)}^{k} {(5y)}^{20-k} $
$ = \sum^{20}_{k=0} \binom{20}{k} {(-3x)}^{n-k} {(5y)}^{k} $

$ = \binom{20}{15} {(-3)}^{15} {5}^{5} x^{15} y^5 $
We only consider $k=5$, as it results in $y^{5}$.

$ = - \binom{20}{15} {(3)}^{15} {5}^{5} x^{15} y^5 $
$ = \binom{20}{5} \cdot {(-3x)}^{20-5} \cdot {(5y)}^{5} $

Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{15} {(3)}^{15} {5}^{5} $
$ = \binom{20}{5} \cdot {(-3)}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $

$ = - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} \cdot x^{15} \cdot y^5 $

Thus, the coefficient of $x^{15}y^{5}$ in the expansion of ${(-3x + 5y)}^{20}$ is $ - \binom{20}{5} \cdot {3}^{15} \cdot {5}^{5} $
Original file line number Diff line number Diff line change
Expand Up @@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/7/solution.md
tags:
- comp2804
- comp2804-midterm
- comp2804-newton's-binomial-theorem
- comp2804-the-pigeonhole-principle
---
Original file line number Diff line number Diff line change
Expand Up @@ -8,5 +8,5 @@ solution: comp2804/2015-fall-midterm/8/solution.md
tags:
- comp2804
- comp2804-midterm
- comp2804-counting-solutions-of-linear-equations
- comp2804-newton's-binomial-theorem
---
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
$=\sum^{88}_{k=0} \binom{88}{k}{(3x)}^k {(-17y)}^{88-k}$
$=\sum^{88}_{k=0} \binom{88}{k}{(3x)}^{88-k} {(-17y)}^{k}$

$=\binom{88}{7}{(3x)}^{81} {(-17y)}^{7}$

Expand Down
12 changes: 9 additions & 3 deletions src/content/questions/comp2804/2015-winter-final/4/solution.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,13 @@
$ {(2x-7y)}^{15} $

$= \sum\_{k=4}^{15} \binom{15}{k} {(2x)}^{k} {(-7y)}^{15-k} $
$ = \sum_{k=0}^{15} \binom{15}{k} {(2x)}^{n-k} {(-7y)}^{k} $

$ = \binom{15}{4} 2^{4} {(-7)}^{11} x^4 y^{11}$
We only consider $k=11$, as it results in $y^{11}$.

$ = - \binom{15}{4} 2^{4} {(7)}^{11} $
$ = \binom{15}{11} \cdot {(2x)}^{15-11} \cdot {(-7y)}^{11} $

$ = \binom{15}{11} \cdot 2^{4} \cdot {(-7)}^{11} \cdot x^4 \cdot y^{11} $

$ = - \binom{15}{4} \cdot 2^{4} \cdot 7^{11} \cdot x^4 \cdot y^{11} $

Thus, the coefficient of $ x^{4}y^{11} $ in the expansion of $ {(2x-7y)}^{15} $ is $ - \binom{15}{11} \cdot {2}^{4} \cdot {7}^{11} $
12 changes: 8 additions & 4 deletions src/content/questions/comp2804/2016-fall-midterm/9/solution.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
$ = \sum^{50}\_{k=0} \binom{50}{k} {(5x)}^{50-k} {(-7y)}^k $
$ = \sum^{50}_{k=0} \binom{50}{k} {(5x)}^{n-k} {(-7y)}^k $

$ = \sum^{50}\_{k=0} \binom{50}{26} {(5x)}^{50-26} {(-7y)}^k $
We only consider $k=26$, as it results in $y^{26}$.

$ = \binom{50}{24} {(5)}^{24} x^{24} {(-7)}^{26} y^{26} $
$ = \binom{50}{26} \cdot {(5x)}^{50-26} \cdot {(-7y)}^{26} $

$ = \binom{50}{26} {(5)}^{24} {(-7)}^{26} x^{24} y^{26} $
$ = \binom{50}{26} \cdot {(5)}^{24} \cdot x^{24} \cdot {(-7)}^{26} \cdot y^{26} $

$ = \binom{50}{26} \cdot 5^{24} \cdot 7^{26} \cdot x^{24} \cdot y^{26} $

Thus, the coefficient is $ \binom{50}{26} \cdot 5^{24} \cdot 7^{26} $
12 changes: 6 additions & 6 deletions src/content/questions/comp2804/2017-fall-midterm/9/solution.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
$ = \sum^{100}\_{k=0} \binom{100}{k} {(7x)}^{k} {(-13y)}^{100-k} $
$ = \sum^{100}_{k=0} \binom{100}{k} {(7x)}^{n-k} {(-13y)}^{k} $

$ = \sum^{100}\_{k=0} \binom{100}{20} {(7x)}^{20} {(-13y)}^{100-20} $
We only consider $k=80$, as it results in $y^{80}$.

$ = \binom{100}{20} {(7)}^{20} x^{20} {(-13)}^{80} y^{80} $
$ = \binom{100}{80} \cdot {(7x)}^{100-80} \cdot {(-13y)}^{80} $

$ = \binom{100}{20} {(7)}^{20} {(-13)}^{80} x^{20} y^{80} $
$ = \binom{100}{80} \cdot {(7)}^{20} \cdot x^{20} \cdot {(-13)}^{80} \cdot y^{80} $

$ = \binom{100}{20} {(7)}^{20} {(13)}^{80} x^{20} y^{80} $
$ = \binom{100}{80} \cdot 7^{20} \cdot 13^{80} \cdot x^{20} \cdot y^{80} $

Thus, the coefficient is $ \binom{100}{20} {(7)}^{20} {(13)}^{80} $
Thus, the coefficient is $ \binom{100}{80} \cdot 7^{20} \cdot 13^{80} $
12 changes: 8 additions & 4 deletions src/content/questions/comp2804/2018-fall-final/6/solution.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,11 @@
$ = \sum\_{k = 35}^{55} \binom{55}{k} {(5x)}^{k} {(-3y)}^{n-k} $
$ = \sum_{k=0}^{55} \binom{55}{k} {(5x)}^{n-k} {(-3y)}^{k} $

$ = \binom{55}{20} {(5x)}^{20} {(-3y)}^{35} $
We only consider $k=35$, as it results in $y^{35}$.

$ = - \binom{55}{20} 5^{20} 3^{35} x^{20} y^{35}$
$ = \binom{55}{35} \cdot {(5x)}^{55-35} \cdot {(-3y)}^{35} $

The coefficient is $ - \binom{55}{20} 5^{20} 3^{35} $
$ = \binom{55}{35} \cdot 5^{20} \cdot {(-3)}^{35} \cdot x^{20} \cdot y^{35}$

$ = - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} \cdot x^{20} \cdot y^{35}$

The coefficient is $ - \binom{55}{35} \cdot 5^{20} \cdot 3^{35} $
14 changes: 8 additions & 6 deletions src/content/questions/comp2804/2022-winter-final/6/solution.md
Original file line number Diff line number Diff line change
@@ -1,13 +1,15 @@
$ (2x - 3y)^{30} $

$ = \sum\_{k=10}^{30} \binom{30}{k} \cdot (2x)^{k} \cdot (-3y)^{30-k} $
$ = \sum_{k=0}^{30} \binom{30}{k} \cdot (2x)^{n-k} \cdot (-3y)^{k} $

$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{30-10} $
We only consider $k=20$, as it results in $y^{20}$.

$ = \binom{30}{10} \cdot (2x)^{10} \cdot (-3y)^{20} $
$ = \binom{30}{20} \cdot (2x)^{30-20} \cdot (-3y)^{20} $

$ = \binom{30}{10} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $
$ = \binom{30}{20} \cdot (2x)^{10} \cdot (-3y)^{20} $

$ = \binom{30}{10} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $
$ = \binom{30}{20} \cdot 2^{10} \cdot (-3)^{20} \cdot x^{10} \cdot y^{20} $

From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{10} \cdot 2^{10} \cdot (3)^{20}$
$ = \binom{30}{20} \cdot 2^{10} \cdot (3)^{20} \cdot x^{10} \cdot y^{20} $

From this equation, we can see that the coefficient (aka the real numbers) are: $\binom{30}{20} \cdot 2^{10} \cdot 3^{20}$