Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions BERT_data.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import torch
import torch.nn as nn
import numpy as np
from torch.utils.data import DataLoader
from transformers import BertTokenizer, BertForSequenceClassification
import pandas as pd
from dataloading import POSDataset, padding_collate_fn, IDX2POS, IGNORE_IDX


def encode_data(target):
ids = []

for sentences in target['tweet']:
encode = tokenizer.encode_plus(
text=sentences,
add_special_tokens=True,
max_length=103,
pad_to_multiple_of=103,
return_attention_mask=True,
return_tensors='pt',
truncation=True
)

ids.append(encode['input_ids'])

return ids


if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

train_data = pd.read_csv('data/training.tsv', sep='\t')
train_labels = train_data['subtask_a']
test_tweets = pd.read_csv('data/testset-levela.tsv', sep='\t')

train_ids = encode_data(train_data)
test_ids = encode_data(test_tweets)

dev_ids = train_ids[:1000]
dev_labels = train_labels[:1000]

train_ids = train_ids[1000:]
train_labels = train_labels[1000:]

df = pd.DataFrame({
"train_encoding": train_ids,
"train_labels": train_labels
})
df.to_csv('bert_train.csv')

df = pd.DataFrame({
"dev_encoding": dev_ids,
"dev_labels": dev_labels
})
df.to_csv('bert_dev.csv')

df = pd.DataFrame({
"test_encoding": test_ids
})

df.to_csv('bert_test.csv')
Loading