Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 18 additions & 2 deletions src/aspire/numeric/complex_pca/complex_pca.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,10 @@

import numpy as np
import scipy.sparse as sp
import sklearn
from packaging.version import Version
from sklearn.decomposition import PCA
from sklearn.utils._array_api import get_namespace

from .validation import check_array

Expand Down Expand Up @@ -45,6 +48,8 @@ def _fit(self, X):
allow_complex=True,
)

xp, is_array_api_compliant = get_namespace(X)

# Handle n_components==None
if self.n_components is None:
if self.svd_solver != "arpack":
Expand All @@ -66,11 +71,22 @@ def _fit(self, X):
else:
self._fit_svd_solver = "full"

# sci-kit changed `_fit_*()` API in latest release v1.5.0
# which supports Python 3.9 - 3.12. This can be removed after
# our minimal support is Python 3.9.
API_dep = Version(sklearn.__version__) < Version("1.5.0")

# Call different fits for either full or truncated SVD
if self._fit_svd_solver == "full":
return self._fit_full(X, n_components)
if API_dep:
return self._fit_full(X, n_components)
else:
return self._fit_full(X, n_components, xp, is_array_api_compliant)
elif self._fit_svd_solver in ["arpack", "randomized"]:
return self._fit_truncated(X, n_components, self._fit_svd_solver)
if API_dep:
return self._fit_truncated(X, n_components, self._fit_svd_solver)
else:
return self._fit_truncated(X, n_components, xp)
else:
raise ValueError(
"Unrecognized svd_solver='{0}'" "".format(self._fit_svd_solver)
Expand Down