Skip to content

Dharshini-DS/Ex-08-Data-Visualization-

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

Ex-07-Data-Visualization-

AIM

To Perform Data Visualization on the given dataset and save the data to a file.

Explanation

Data visualization is the graphical representation of information and data. By using visual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data.

ALGORITHM

STEP 1

Read the given Data

STEP 2

Clean the Data Set using Data Cleaning Process

STEP 3

Apply Feature generation and selection techniques to all the features of the data set

STEP 4

Apply data visualization techniques to identify the patterns of the data.

CODE

Name: Dharshini D.S
Register number: 212221230022
#Reading the given dataset
import pandas as pd
df=pd.read_csv("Superstore.csv",encoding='unicode_escape')
df.head()
#Data Visualization using Seaborn
import seaborn as sns
from matplotlib import pyplot as plt
#1.Line Plot
plt.figure(figsize=(9,6))
sns.lineplot(x="Segment",y="Region",data=df,marker='o')
plt.xticks(rotation = 90)
sns.lineplot(x='Ship Mode',y='Category', hue ="Segment",data=df)
sns.lineplot(x="Category",y="Sales",data=df,marker='o')
#2.Scatterplot
sns.scatterplot(x='Category',y='Sub-Category',data=df)
sns.scatterplot(x='Category', y='Sub-Category', hue ="Segment",data=df)
plt.figure(figsize=(10,7))
sns.scatterplot(x="Region",y="Sales",data=df)
plt.xticks(rotation = 90)
#3.Boxplot
sns.boxplot(x="Sub-Category",y="Discount",data=df)
sns.boxplot( x="Profit", y="Category",data=df)
#4.Violin Plot
sns.violinplot(x="Profit",data=df)
#5.Barplot
sns.barplot(x="Sub-Category",y="Sales",data=df)
plt.xticks(rotation = 90)
sns.barplot(x="Category",y="Sales",data=df)
plt.xticks(rotation = 90)
#6.Pointplot
sns.pointplot(x=df["Quantity"],y=df["Discount"])
#7.Count plot
sns.countplot(x="Category",data=df)
sns.countplot(x="Sub-Category",data=df)
#8.Histogram
sns.histplot(data=df,x ='Ship Mode',hue='Sub-Category')
#9.KDE Plot
sns.kdeplot(x="Profit", data = df,hue='Category')
#Data Visualization Using MatPlotlib
#1.Plot
plt.plot(df['Category'], df['Sales'])
plt.show()
#2.Heatmap
df.corr()
plt.subplots(figsize=(12,7))
sns.heatmap(df.corr(),annot=True)
#3.Piechart
df1=df.groupby(by=["Ship Mode"]).sum()
labels=[]
for i in df1.index:
labels.append(i)
colors=sns.color_palette("bright")
plt.pie(df1["Sales"],labels=labels,autopct="%0.0f%%")
plt.show()
df3=df.groupby(by=["Category"]).sum()
labels=[]
for i in df3.index:
labels.append(i)
plt.figure(figsize=(8,8))
colors = sns.color_palette('pastel')
plt.pie(df3["Profit"],colors = colors,labels=labels, autopct = '%0.0f%%')
plt.show()
#4.Histogram
plt.hist(df["Sub-Category"],facecolor="peru",edgecolor="blue",bins=10)
plt.show()
#5.Bargraph
plt.bar(df.index,df['Category'])
plt.show()
#6.Scatterplot
OUPUT
Reading the given dataset
## Data Visualization Using Seaborn: ### 1.Line Plot
plt.scatter(df["Region"],df["Profit"], c ="blue")
plt.show()
#7.Boxplot
plt.boxplot(x="Sales",data=df)
plt.show()

OUPUT

Reading the given dataset

d1

Data Visualization Using Seaborn:

1.Line Plot

2d

3

4

2.Scatterplot

5

6

7

3.Boxplot

8

9

4.Violin Plot

s1

5.Barplot

s2

s3

6.Pointplot

s4

7.Count plot

s5

s6

8.Histogram

s7

9.KDE Plot

s8

Data Visualization Using Matplotlib:

1.Plot

s9

2.Heatmap

s10

3.Piechart

ds1

ds2

4.Histogram

ds3

5.Bargraph

ds4

6.Scatterplot

ds5

7.Boxplot

ds6

RESULT

Hence,Data Visualization is applied on the complex dataset using libraries like Seaborn and Matplotlib successfully and the data is saved to file.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published