Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 0 additions & 98 deletions apps/website/app/api/embeddings/openai/small/route.ts

This file was deleted.

58 changes: 58 additions & 0 deletions apps/website/app/api/embeddings/route.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import { NextRequest, NextResponse } from "next/server";
import cors from "~/utils/llm/cors";
import { genericEmbedding } from "~/utils/llm/embeddings";
import { EmbeddingSettings, Provider } from "~/types/llm";

type RequestBody = {
input: string | string[];
settings: EmbeddingSettings;
provider?: Provider;
};

export const POST = async (req: NextRequest): Promise<NextResponse> => {
let response: NextResponse;

try {
const body: RequestBody = await req.json();
const { input, settings, provider = "openai" } = body;

if (!input || (Array.isArray(input) && input.length === 0)) {
response = NextResponse.json(
{ error: "Input text cannot be empty." },
{ status: 400 },
);
return cors(req, response) as NextResponse;
}

const embeddings = await genericEmbedding(input, settings, provider);
if (embeddings === undefined)
response = NextResponse.json(
{
error: "Failed to generate embeddings.",
},
{ status: 500 },
);
else response = NextResponse.json(embeddings, { status: 200 });
} catch (error: unknown) {
console.error("Error calling OpenAI Embeddings API:", error);
const errorMessage =
process.env.NODE_ENV === "development"
? error instanceof Error
? error.message
: "Unknown error"
: "Internal server error";
response = NextResponse.json(
{
error: "Failed to generate embeddings.",
details: errorMessage,
},
{ status: 500 },
);
}

return cors(req, response) as NextResponse;
};

export const OPTIONS = async (req: NextRequest): Promise<NextResponse> => {
return cors(req, new NextResponse(null, { status: 204 })) as NextResponse;
};
135 changes: 135 additions & 0 deletions apps/website/app/api/supabase/rpc/search-content/route.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import { createClient } from "~/utils/supabase/server";
import { NextResponse, NextRequest } from "next/server";
import type { SupabaseClient } from "@supabase/supabase-js";
import cors from "~/utils/llm/cors";
import type { Database } from "@repo/database/types.gen.ts";
import { get_known_embedding } from "~/utils/supabase/dbUtils";
import { genericEmbedding } from "~/utils/llm/embeddings";
import type { Provider, EmbeddingSettings } from "~/types/llm";

type RequestBody = {
queryText: string; // The text that the content embeddings will be compared to.
subsetPlatformIds: string[]; // Restrict results to these contents. Uses Platform (eg Roam) identifiers.
};

type RpcResponseItem =
Database["public"]["Functions"]["match_embeddings_for_subset_nodes"]["Returns"];

async function callMatchEmbeddingsRpc(
supabase: SupabaseClient<Database, "public", Database["public"]>,
query: RequestBody,
): Promise<{ data?: RpcResponseItem; error?: string }> {
const { queryText, subsetPlatformIds } = query;
const provider: Provider = "openai";
const settings: EmbeddingSettings = { model: "text-embedding-3-small" };

const table_data = get_known_embedding(
settings.model,
settings.dimensions,
provider,
);
if (table_data === undefined) {
return {
error: "Invalid model information",
};
}

let newEmbedding;
try {
newEmbedding = await genericEmbedding(queryText, settings, provider);
} catch (error) {
if (error instanceof Error)
return {
error: error.message,
};
return {
error: `Unknown error generating embeddings: ${error}`,
};
}
if (!Array.isArray(subsetPlatformIds)) {
console.log(
"[API Route] callMatchEmbeddingsRpc: Invalid subsetPlatformIds.",
);
return { error: "Invalid subsetPlatformIds" };
}

// If subsetPlatformIds is empty, the RPC might not find anything or error,
// depending on its implementation. It might be more efficient to return early.
if (subsetPlatformIds.length === 0) {
console.log(
"[API Route] callMatchEmbeddingsRpc: subsetPlatformIds is empty, returning empty array without calling RPC.",
);
return { data: [] }; // Return empty array, no need to call RPC
}

const response = await supabase.rpc("match_embeddings_for_subset_nodes", {
p_query_embedding: JSON.stringify(newEmbedding),
p_subset_roam_uids: subsetPlatformIds,
});
return { data: response.data || undefined, error: response.error?.message };
}

export async function POST(request: NextRequest) {
console.log("[API Route] POST /api/supabase/rpc/search: Request received");
const supabase = await createClient();
let response: NextResponse;

try {
const body: RequestBody = await request.json();
console.log("[API Route] POST: Parsed request body:", body);

console.log("[API Route] POST: Calling callMatchEmbeddingsRpc.");
const { data, error } = await callMatchEmbeddingsRpc(supabase, body);
console.log("[API Route] POST: Received from callMatchEmbeddingsRpc:", {
dataLength: data?.length,
error,
});

if (error) {
console.error(
"[API Route] POST: Error after callMatchEmbeddingsRpc:",
error,
);
const statusCode = error?.includes("Invalid") ? 400 : 500;
response = NextResponse.json(
{
error: error || "Failed to match embeddings via RPC.",
},
{ status: statusCode },
);
} else {
console.log(
"[API Route] POST: Successfully processed request. Sending data back. Data length:",
data?.length,
);
response = NextResponse.json(data, { status: 200 });
}
} catch (e: any) {
console.error(
"[API Route] POST: Exception in POST handler:",
e.message,
e.stack,
);
if (e instanceof SyntaxError && e.message.toLowerCase().includes("json")) {
response = NextResponse.json(
{ error: "Invalid JSON in request body" },
{ status: 400 },
);
} else {
response = NextResponse.json(
{ error: "An unexpected error occurred processing your request." },
{ status: 500 },
);
}
}
console.log(
"[API Route] POST: Sending final response with status:",
response.status,
);
return cors(request, response) as NextResponse;
}

export async function OPTIONS(request: NextRequest) {
const response = new NextResponse(null, { status: 204 });
return cors(request, response) as NextResponse;
}
7 changes: 7 additions & 0 deletions apps/website/app/types/llm.ts
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
export type Provider = "openai" | "anthropic" | "gemini";

export type Message = {
role: string;
content: string;
Expand All @@ -19,6 +21,11 @@ export type RequestBody = {
settings: Settings;
};

export type EmbeddingSettings = {
model: string;
dimensions?: number;
};

export const CONTENT_TYPE_JSON = "application/json";
export const CONTENT_TYPE_TEXT = "text/plain";

Expand Down
59 changes: 59 additions & 0 deletions apps/website/app/utils/llm/embeddings.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import OpenAI from "openai";
import { EmbeddingSettings, Provider } from "~/types/llm";
import { openaiConfig } from "./providers";

const OPENAI_REQUEST_TIMEOUT_MS = 30000;

const openaiEmbedding = async (
input: string | string[],
settings: EmbeddingSettings,
): Promise<number[] | number[][] | undefined> => {
const config = openaiConfig;
const apiKey = process.env[config.apiKeyEnvVar];
if (!apiKey)
throw new Error(
`API key not configured. Please set the ${config.apiKeyEnvVar} environment variable in your Vercel project settings.`,
);
const openai = new OpenAI({ apiKey: apiKey });

let options: OpenAI.EmbeddingCreateParams = {
model: settings.model,
input,
};
if (settings.dimensions) {
options = { ...options, ...{ dimensions: settings.dimensions } };
}

const embeddingsPromise = openai!.embeddings.create(options);
const timeoutPromise = new Promise<never>((_, reject) =>
setTimeout(
() => reject(new Error("OpenAI API request timeout")),
OPENAI_REQUEST_TIMEOUT_MS,
),
);

const response = await Promise.race([embeddingsPromise, timeoutPromise]);
const embeddings = response.data.map((d) => d.embedding);
if (Array.isArray(input)) return embeddings;
else return embeddings[0];
};

export const genericEmbedding = async (
input: string | string[],
settings: EmbeddingSettings,
provider: Provider = "openai",
): Promise<number[] | number[][] | undefined> => {
if (provider == "openai") {
return await openaiEmbedding(input, settings);
} else {
// Note: There are two paths here.
// Earlier code choose to add openai to dependencies and use the library. It's what I had built on.
// We could follow that pattern, add anthropic/gemini, and use those in the handlers as well.
// The new code pattern uses direct api calls and structures.
// It should not be too considerable an effort to extend the LLMProviderConfig for embeddings.
// Either way is minimal work, but I think neither should be pursued without discussing
// the implicit tradeoff: More dependencies vs more resilience to API changes.
// right now I choose to minimize changes to my work to reduce scope.
throw Error("Not implemented");
}
};
8 changes: 7 additions & 1 deletion apps/website/app/utils/llm/providers.ts
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
import { LLMProviderConfig, Message, Settings } from "~/types/llm";
import { LLMProviderConfig, Message, Settings, Provider } from "~/types/llm";

export const openaiConfig: LLMProviderConfig = {
apiKeyEnvVar: "OPENAI_API_KEY",
Expand Down Expand Up @@ -58,3 +58,9 @@ export const anthropicConfig: LLMProviderConfig = {
extractResponseText: (responseData: any) => responseData.content?.[0]?.text,
errorMessagePath: "error?.message",
};

export const CONFIG_FOR_PROVIDER: { [key in Provider]: LLMProviderConfig } = {
openai: openaiConfig,
anthropic: anthropicConfig,
gemini: geminiConfig,
};
Loading