File tree Expand file tree Collapse file tree 2 files changed +110
-0
lines changed
Expand file tree Collapse file tree 2 files changed +110
-0
lines changed Original file line number Diff line number Diff line change 1+ data :
2+ batch_size : 1
3+ eval_batch_size : 1
4+
5+ model :
6+ pretrained_model : Salesforce/codet5-base
7+ pretrained_tokenizer : Salesforce/codet5-base
8+ skip_special_token_when_generate : False
9+ beam_size : 20
10+
11+ trainer :
12+ auto_select_gpus : true
13+ gpus : -1
14+ strategy : ddp
15+ # find_unused_parameters: false
16+ precision : 16
17+
18+ # max_steps: 50_000
19+ # fast_dev_run: true
20+ max_epochs : 30
21+ accumulate_grad_batches : 4 # effective batch size 1*4(gpu)*4(accumulate) = 32
22+
23+ callbacks :
24+ - class_path : pytorch_lightning.callbacks.EarlyStopping
25+ init_args :
26+ monitor : bleu/val
27+ mode : max
28+ min_delta : 0
29+ patience : 5
30+ verbose : true
31+ # - class_path: pytorch_lightning.callbacks.StochasticWeightAveraging # Incompatible with EarlyStopping
32+ - class_path : pytorch_lightning.callbacks.lr_monitor.LearningRateMonitor
33+ init_args :
34+ logging_interval : step
35+
36+ optimizer :
37+ class_path : transformers.optimization.AdamW
38+ init_args :
39+ lr : 0.00005
40+ eps : 1e-8
41+ weight_decay : 0.01
42+
43+ lr_scheduler :
44+ class_path : torch.optim.lr_scheduler.OneCycleLR
45+ init_args :
46+ max_lr : 0.00005
47+ pct_start : 0.1
48+ div_factor : 1
49+ total_steps : 30
50+ anneal_strategy : linear
51+
52+ ckpt :
53+ save_top_k : 1
54+ monitor : bleu/val
55+ mode : max
Original file line number Diff line number Diff line change 1+ data :
2+ batch_size : 1
3+ eval_batch_size : 1
4+
5+ model :
6+ pretrained_model : ../models/pretrain/model/
7+ pretrained_tokenizer : ../models/codeT5Tokenizer
8+ beam_size : 20
9+ skip_special_token_when_generate : False
10+
11+ trainer :
12+ auto_select_gpus : true
13+ gpus : -1
14+ strategy : ddp
15+ # find_unused_parameters: false
16+ precision : 16
17+
18+ # max_steps: 50_000
19+ # fast_dev_run: true
20+ max_epochs : 30
21+ accumulate_grad_batches : 12 # effective batch size 1*4(gpu)*12(accumulate) = 48
22+
23+ callbacks :
24+ - class_path : pytorch_lightning.callbacks.EarlyStopping
25+ init_args :
26+ monitor : bleu/val
27+ mode : max
28+ min_delta : 0
29+ patience : 5
30+ verbose : true
31+ # - class_path: pytorch_lightning.callbacks.StochasticWeightAveraging # Incompatible with EarlyStopping
32+ - class_path : pytorch_lightning.callbacks.lr_monitor.LearningRateMonitor
33+ init_args :
34+ logging_interval : step
35+
36+ optimizer :
37+ class_path : transformers.optimization.AdamW
38+ init_args :
39+ lr : 0.00005
40+ eps : 1e-8
41+ weight_decay : 0.01
42+
43+ lr_scheduler :
44+ class_path : torch.optim.lr_scheduler.OneCycleLR
45+ init_args :
46+ max_lr : 0.00005
47+ pct_start : 0.1
48+ div_factor : 1
49+ total_steps : 50
50+ anneal_strategy : linear
51+
52+ ckpt :
53+ save_top_k : 1
54+ monitor : bleu/val
55+ mode : max
You can’t perform that action at this time.
0 commit comments